

MEAP Edition
Manning Early Access Program

Rust Servers, Services, and Apps
Version 1

Copyright 2020 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. To comment go to liveBook ©Manning Publications Co. To comment go to liveBook

https://www.manning.com/

welcome
Thank you for purchasing the MEAP edition of Rust Servers, Services and Apps.

Rust is a hot topic right now. It has been named most loved programming language in developer surveys for five
consecutive years, and interest is growing among software developers and engineers alike, from both ends of the
spectrum: low-level system programmers and higher-level application developers all want to explore and learn Rust.
That said, one question that gets asked frequently is whether Rust is really suitable and ready for the web. Most of
the learning material available in this space is really introductory in nature, and doesn’t provide a view into how
Rust can handle more complex scenarios encountered in web development. In this book, I aim to show you how
Rust, in spite of its reputation for being a systems programming language, is really a surprisingly elightful language
to build web applications in.

Of course, most (if not all) web development happens using web frameworks, rather than directly using a vanilla
programming language. The web frameworks in Rust are much younger than full-featured and battle-tested
frameworks like Rails, Django or Laravel. But inspite of its young ecosystem, Rust provides several compelling
benefits for the web domain, including an expressive and static type system that translates to higher system
reliability, lower and consistent resource usage, superior performance, and options for lower-level control than what
is possible with other web development languages.

In this book I will show you how to apply Rust to the web domain. Using a practical full-length project, we will push
the limits and see how Rust measures up to real-world challenges. We’ll build a low-level web server, a web service,
a server- rendered application, and a WASM-based front-end (single-page application), and these scenarios will give
you a pretty good foundation to evaluate for yourself how you can apply Rust at work or to a side-project in the web
domain. Perhaps more importantly, this book will help you identify use cases for which you would not use Rust, and
instead opt for the safety and comfort of another programming language and ecosystem. Along the way, I will also
share practical tips and pitfalls, and best practices gained from my experience running Rust backend servers and
applications in production environments.
If you have read The Rust Programming Language (a.k.a "the Book"), are eager to apply Rust to a practical domain
that you are already familiar with, and are interested in strengthening your knowledge of Rust fundamentals, this
book is for you. Further, I’ve made a conscious choice not to make this book all about learning any specific web
framework or library (though I’ve made choices of tools for purposes of narrative and coding examples).

What I will not attempt to do in this book is to draw the battle-lines on which is the best programming language.
So, if you are familiar with Rust but not yet convinced of its value proposition, this book may not be for you. Nor is
this book aimed at people who have absolutely no knowledge of what Rust is about or what it offers. That said, if
you’ve tried Rust and love it already, and are also interested in the web domain, I invite you to join me on the
journey to explore Rust for the web, and I welcome your feedback in the liveBook's Discussion Forum for the book.

- Best regards, Prabhu Eshwarla

©Manning Publications Co. To comment go to liveBook ©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/rust_servers_services_and_apps/discussion

brief contents
PART 1: WEB SERVERS AND SERVICES

1 W hy Rust for web applications?

2 Writing a basic web server from scratch

3 Building a RESTful web service

4 Performing database operations

5 Handling errors and securing APIs

6 Evolving the APIs and fearless refactoring

PART 2: SERVER-SIDE WEB APPLICATION

7 W orking with templates - list and detail views

8 W orking with forms

PART 3: CLIENT-SIDE WEB APPLICATION

9 W riting the first single-page app in Rust

10 Writing components, events, views and services

PART 3: MOVING TO PRODUCTION

11 Benchmarking and profiling

12 Packaging and deployment

APPENDIXES

A Rust installation

B References

©Manning Publications Co. To comment go to liveBook ©Manning Publications Co. To comment go to liveBook

1
This chapter covers:

Connected web applications that work over the internet form the backbone of modern businesses
and human digital lives.

As individuals, we use consumer-focused apps for social networking & communications, for
e-commerce purchases, for travel bookings, to make payments, manage finances, for education,
and to entertain ourselves, just to name a few. Likewise, business-focused applications are used
across practically all functions and processes in an enterprise.

Today’s web applications are mind-boggingly complex distributed systems. Users of these
applications interact through web or mobile front-end user interfaces. But the users rarely see the
complex environment consisting of backend services and software infrastructure components
that respond to user requests made through sleek app user interfaces. Popular consumer apps
have thousands of backend services and servers distributed in data centers across the globe. Each
feature of an app may be executing on a different server, implemented with a different design
choice, written in a different programming language and located in a different geographical
location. The seamless in-app user experience makes things look so easy. But developing modern
web applications .is anything but easy

We use web applications everytime we tweet, watch a movie on Netflix, listen to a song on
Spotify, make a travel booking, order food, play an online game, hail a cab, or use any of the
numerous online services as part of our daily lives.

Why Rust for web applications?

Introduction to modern web applications
Choosing Rust for web applications
Visualizing the example application

1

1.

2.

3.

4.

5.

Web sites provide information about your business. Web applications provide services to your
customers.

– Author

In short, without distributed web applications, businesses and modern digital sociey will come to
a grinding halt.

In this book, you will learn the concepts, techniques and tools to design and develop distributed
web services and applications using Rust, that communicate over standard internet protocols.
Along the way, you will see core Rust concepts in action through practical working examples.

This book is for you if you are a web backend software engineer, fullstack application developer,
cloud or enterprise architect, CTO for a tech product or simply a curious learner who is
interested in building distributed web applications that are incredibly safe, efficient, highly

. Through a workingperformant, and do not incur exorbitant costs to operate and maintain
example that is progressively built out through the rest of this book, I will show you how to build
web services , traditional web applications and modern WASM-based client front-ends in pure
Rust.

In this chapter we will review the key characteristics of distributed web applications, understand
how and where Rust shines, and outline the example application we will together build in this
book.

In this section, we will learn more about the structure of modern, distributed web applications.

Distributed systems have components that may be distributed across several different computing
processors, communicate over a network, and concurrently execute workloads. Technically, your
home computer itself resembles a networked distributed system (given the modern multi-CPU
and multi-core processors).

Popular types of distributed systems include:

Distributed networks such as telecommunication networks and the Internet

Distributed client-server applications. Most web-based applications fall in this category

Distributed P2P applications such as BitTorrent and Tor

Real-time control systems such as airtraffic and industrial control

Distributed server infrastructures such as cloud, grid and other forms of scientific

computing

Distributed systems are broadly composed of three parts: distributed applications networking

1.1 Introduction to modern web applications

2

stack and hardware/OS infrastructure.

Distributed applications can use a wide array of networking protocols to communicate internally
between its components. However, HTTP is the overwhelming choice today for a web service or
web application to communicate with the outside world, due to its simplicity and universality.

Web applications are programs that use HTTP as the application-layer protocol, and provide
some functionality that is accessible to human users over standard internet browsers. When these
web applications are not monolithic, but composed of tens or hundreds of distributed application
components that cooperate and communicate over a network, they are called webdistributed
applications. Examples of large-scale distributed web applications include social media
applications such as Facebook & Twitter, ecommerce sites such as Amazon or eBay,
sharing-economy apps like Uber & Airbnb, entertainment sites such as Netflix, and even
user-friendly cloud provisioning applications from providers such as AWS, Google and Azure.

Figure 1.1 provides a representative logical view of the distributed systems stack for a modern
web application.

Figure 1.1 Distributed systems stack (simplified)

While in the real-world, such systems can be distributed over thousands of servers, in the figure
you can see three servers which are connected through a networking stack. These servers may all
be within a single data center or distributed on the cloud geographically. Within each server, a
layered view of the hardware and software components is shown. A logical breakup of the
distributed system is described here:

Hardware and OS infrastructure components such as physical servers (in data center

or cloud), operating system, and virtualisation/container runtimes. Devices such as

3

embedded controllers, sensors, and edge devices also can be classified in this layer (think

of a futuristic case where tweets are triggered to social media followers of a supermarket

chain when stocks of RFID-labelled items are placed or removed from supermarket

shelves).

Networking stack comprises the four-layered which forms theInternet Protocol suite

communication backbone for the distributed system components to communicate with

each other across physical hardware. The four networking layers are (ordered by lowest

to lighest level of abstraction):

Network link/access layer,

Internet layer,

Transport layer and

Application layer

The first three layers are implemented at the hardware/OS level on most operating systems. For
most distrbuted web applications, the primary application layer protocol used is HTTP. Popular
API protocols such as REST, gRPC and GraphQL use HTTP.

For more details, see the documentation at .https://tools.ietf.org/id/draft-baker-ietf-core-04.html

Distributed applications: Distributed applications are a subset of distributed systems.

Modern n-tier distributed applications are built as a combination of:

Application front-ends: these can be mobile apps (running on iOS or Android) or web

front-ends running in an internet browser. These app front-ends communicate with

application backend services residing on remote servers (usually in a data center or a

cloud platform). End users interact with application front-ends

Application backends: These contain the application business rules, database access

logic, computation-heavy processes such as image or video processing, and other service

integrations. They are deployed as individual processes (such as systemd process on

Unix/Linux) running on physical or virtual machines, or as microservices in container

engines (such as Docker) managed by container orchestration environments (such as

Kubernetes). Unlike the application front-ends, application backends expose their

functionality through application programming interfaces (APIs). Application
front-ends interact with application backend services to complete tasks on behalf of
users.

Distributed software infrastructure includes components that provide supporting services

for application backends. Examples are protocol servers, databases, KV stores, caching,

messaging, load balancers and proxies, service discovery platforms, and other such

infrastructure components that are used for communications, operations, security and

4

https://tools.ietf.org/id/draft-baker-ietf-core-04.html

monitoring of distributed applications. Application backends interact with distributed
software infrastructure for purposes of service discovery, communications, lifecycle
support, security and monitoring, to name a few.

Now that we have an overview of distributed web applications, let’s take a look at the benefits of
using Rust for building them.

Rust can be used to build all the three layers of distributed applications - , front-ends backend
 and components. But each of these layers has a different set ofservices software infrastructure

concerns and characteristics to address. It is important to be aware of these while discussing
benefits of Rust.

For example, the client front-ends deal with aspects such as user interface design, user
experience, tracking changes in application state and rendering updated views on screen, and
constructing and updating DOM.

Considerations while designing backend services include well-designed APIs to reduce
roundtrips, high throughput (measured requests per second), response time under varying loads,
low and predictable latency for applications such as video streaming and online gaming, low
memory and CPU footprint, service discovery and availability.

Software infrastructure layer is concerned primarily with extremely low latencies, low-level
control of network and other operating-system resources, frugal usage of CPU and memory,
efficient data structures and algorithms, built-in security, small start-up and shut-down time, and
ergonomic APIs for usage by application backend services.

As you can see, a single web application comprises of components with atleast three sets of
characteristics and requirements. While each of these is a topic for a separate book in itself, we
will look at things more holistically, and focus on a set of common characteristics that broadly
benefit all the three layers of a web application.

Web applications can be of different types.

Highly mission-critical applications such as autonomous control of vehicles and smart

grids, industrial automation, and high-speed trading applications where successful trades

depend on ability to quickly and reliably respond to input events

High-volume transaction and messaging infrastructures such as e-commerce platforms,

social networks and retail payment systems

Near-real time applications such as online gaming servers, video or audio processing,

1.2 Choosing Rust for web applications

1.2.1 Characteristics of web applications

5

1.

2.

3.

4.

1.

2.

3.

video conferencing and real-time collaboration tools

These applications can be seen to have a common set of requirements which can be expressed as
below.

Should be safe, secure and reliable

Should be resource-efficient

Have to minimize latency

Should support high concurrency

In addition, the following would be nice-to-have requirements for such services:

Should have quick start-up and shut-down time

Should be easy to maintain and refactor

Must offer developer productivity

It is important to note that all the above requirements can be addressed both at the level of
 and at the . For example, high concurrency can be achievedindividual services architectural level

by an individual service by adopting multi-threading or async I/O as forms of concurrency.
Likewise, high concurrency can be achieved at an architectural level by adding several instances
of a service behind a load balancer to process concurrent loads. When we talk of benefits of Rust
in this book, we are talking at an , because architectural-level options areindividual service-level
common to all programming languages.

We’ve earlier seen that modern web applications comprise web front-ends, backends and
software infrastructure. The benefits of Rust for developing web front-ends, either to replace or
supplement portions of javascript code, is something we will discuss in the chapter on
developing WASM-based front-ends in Rust.

Here we will focus primarily on the benefits of Rust for and application backends software
. Rust meets all of the critical requirements that we discussed in theinfrastructure services

previous section, for such services. Let’s see how.

When we talk about program safety, there are three distinct aspects to consider - , type safety
 and .thread safety memory safety

Type safety: Rust is a statically typed language. Type checking, which verifies and enforces type
constraints, happens at compile-time. The type of a variable has to be known at compile time. If
you do not specify a type for a variable, the compiler will try to infer it. If it is unable to do so, or

1.2.2 Benefits of Rust for web applications

RUST IS SAFE

6

if it sees conflicts, it will let you know and prevent you from proceeding ahead. In this context,
Rust is in a similar league as Java, Scala, C and C++. Type safety in Rust is very strongly
enforced by the compiler, but with helpful error messages. This helps to safety eliminate an
entire class of run-time errors.

Memory safety: Memory safety is, arguably, one of the most unique aspects of the Rust
programming language. To do justice to this topic, let’s analyze this in detail.

Mainstream programming languages can be classified into two groups based on how they
provide memory management.

The first group comprises of languages with manual memory management such as C and C++.
The second group contains languages with a garbage collector such as Java, C#, Python, Ruby
and Go.

Since developers are not perfect, manual memory management also means acceptance of a
degree of unsafety, and thus lack of program correctness. So, for cases where low-level control
of memory is not necessary and absolute performance is not a must, garbage collection as a
technique has become the mainstream feature of many modern programming languages over the
last 20 to 25 years. Even though garbage collection has made programs safer than manually
managing memory, they come with their limitations in terms of execution speed, consuming
additional compute resources, and possible stalling of program execution. Also garbage
collection only deals with memory and not other resources such as network sockets, and database
handles.

Rust is the first popular language to propose an alternative — automatic memory management
and memory safety without garbage collection. As you are probably aware, it achieves this
through a unique . Rust enables developers to control the memory layout ofownership model
their data structures and makes ownership explicit. Rust’s ownership model of resource
management is modeled around RAII (Resource Acquisition is Initialization)- a C++
programming concept, and smart pointers that enable safe memory usage.

By way of a quick refresher, in this model, each value declared in a Rust program is assigned an
owner. Once a value is given away to another owner, it can no longer be used by the original
owner. The value is automatically destroyed (memory is deallocated) when the owner of the
value goes out of scope.

Rust can also grant temporary access to a value, to another variable or function. This is called
. Rust compiler (specifically, the borrow checker) ensures that a borrowing reference to a value

does not outlive the . To borrow a value, the operator is used (called a value being borrowed &
). are of two types - , which allows sharing but notreference References immutable reference &T

mutation, and , which allows mutation but not sharing. Rust ensuresmutable reference &mut T
that whenever there is a mutable borrow of an object, there are no other borrows of that object

7

1.

2.

3.

4.

(either mutable or immutable). All this is enforced at compile time, leading to elimination of
entire classes of errors involving invalid memory access.

To summarize, you can program in Rust without fear of invalid memory access, in a language
without garbage collector. Rust provides compile-time guarantees to protect from the following
categories of memory safety errors, by default:

Null pointer dereferences: Case of a program crashing because a pointer being

dereferenced is null

Segmentation faults where programs attempt to access a restricted area of memory

Dangling pointers, where a value associated with a pointer no longer exists.

Buffer overflows, due to programs accessing elements before the start or beyond the end

of an array. Rust iterators don’t run out of bounds.

Thread safety: In Rust, memory and thread safety (which seem like two completely different
concerns) are solved using the same foundational principle of . For type safety, Rustownership
ensures no undefined behaviour due to data races, by default. While some of the web
development languages may offer similar guarantees, Rust goes one step further and prevents
you from sharing objects between threads that are not thread-safe. Rust marks some data types as
thread-safe, and enforces these for you. Most other languages do not make this distinction
between and data structures. The Rust compiler categorically preventsthread-safe thread-unsafe
all types of data races, which makes multi-threaded programs much more safer.

Here are a couple of references for a deep-dive into this topic:

S e n d a n d S y n c t r a i t s :

https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html

Fearless concurrency with Rust: https://blog.rust-lang.org/.../Fearless-Concurrency.html

In addition to what was discussed, there are a few other features of Rust that improve safety of
programs:

All variables in Rust are immutable by default, and explicit declaration is required before

mutating any variable. This forces the developer to think through how and where data

gets modified, and what is the lifetime of each object.

Rust’s ownership model handles not just memory management, but management of

variables owning other resources such as network sockets, database and file handles, and

device descriptors.

Lack of a garbage collector prevents non-deterministic behaviour.

Match clauses (which are equivalent to statements in other languages) areSwitch

exhaustive, which means that the compiler forces the developer to handle every possible

variant in the statement, thus preventing developers from inadvertently missing outmatch

8

https://doc.rust-lang.org/book/ch16-04-extensible-concurrency-sync-and-send.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

handling of certain code flow paths that may result in unexpected run-time behaviour.

Presence of Algebraic data types that make it easier to represent the data model in a

concise verifiable manner.

Rust’s statically-typed system, ownership & borrowing model, lack of a garbage collector,
immutable-by-default values, and exhaustive pattern matching all of which are enforced by the
compiler, provide Rust with an undeniable edge for developing safe applications.

System resources such as CPU, memory and disk space have progressively become cheaper over
the years. While this has proved to be very beneficial in the development and scaling of
distributed applications, it also brings a few drawbacks. First of all, there is a general tendency
among software teams to simply throw more hardware to solve scalability challenges - more
CPU, more memory and more disk space. This has even been formalized as a software technique
called horizontal scalability. But the real reason this has become popular is due to limitation in
language design of mainstream web development languages of today. High level
web-development languages such as Javascript, Java, C#, Python and Ruby do not allow
fine-grained memory control to limit memory usage. Many programming languages do not
utilize multi-core architectures of modern CPUs well. Dynamic scripting languages do not make
efficient memory allocations because the type of the variable is known only at run-time, so
optimizations are not possible unlike statically-typed languages.

Rust offers the following innate features that enable creation of resource-efficient services:

Due to its ownership model of memory management, Rust makes it hard (if not

impossible) to write code that leaks memory or other resources.

Rust allows developers to tightly control memory layout for their programs.

Rust does not have a garbage collector (GC), like a few other mainstream languages, that

consumes additional CPU and memory resources. For example, GC code runs in separate

threads and consumes resources.

Rust does not have a large complex runtime. This gives tremendous flexibility to run

Rust programs even in underpowered embedded systems and microcontrollers like home

applicances and industrial machines. Rust can run in bare metal without kernels.

Rust discourages deep copy of heap-allocated memory and provides various types of

smart pointers to optimize memory footprint of programs. The lack of a runtime in Rust

makes it one of the few modern programming languages appropriate for extremely

low-resource environments.

Rust combines the best of static typing, fine-grained memory control. efficient use of multi-core
CPUs and built-in asynchronous I/O semantics that make it very resource efficient in terms of
CPU and memory utilization. All these aspects translate to and a lower server costs lower

RUST IS RESOURCE-EFFICIENT

9

 for small and large applications alike.operational burden

Latency for a roundtrip network request and response depends both on and network latency
. is impacted by many factors such as transmission medium,service latency Network latency

propagation distance, router efficiency and network bandwidth. is dependent onService latency
many factors such as I/O delays in processing the request, whether there is a garbage collector
that introduces non-deterministic delays, Hypervisor pauses, amount of context switching (eg in
multi-threading), serialization and deserialization costs, etc.

From a purely programming language perspective, Rust provides low latency due to low-level
hardware control as a systems programming language. Rust also does not have a garbage
collector and run-time, has native support for non-blocking I/O, a good ecosystem of
high-performance async (non-blocking) I/O libraries and runtimes, and zero-cost abstractions as
a fundamental design principle of the language. Additionally, by default, Rust variables live on
the stack which is faster to manage.

Several different benchmarks have shown comparable performance between idiomatic Rust and
idiomatic C++ for similar workloads, which is faster than those that can be obtained with
mainstream web development languages.

We previously looked at concurrency features of Rust from a program safety perspective. Now
let’s look at Rust concurrency from the point of view of better multi-core CPU utilization,
throughput and performance for application and infrastructure services.

Rust is a concurrency-friendly language that enables developers to leverage the power of
multi-core processors.

Rust provides two types of concurrency - classic multi-threading and asynchronous I/O.

Multi-threading: Rust’s traditional multi-threading support provides for both shared-memory and
message-passing concurrency. Type-level guarantees are provided for sharing of values. Threads
can borrow values, assume ownership and transition the scope of a value to a new thread. Rust
also provides data race safety which prevents thread blocking, improving performance. In order
to improve memory efficiency and avoid copying of data shared across threads, Rust provides

 as a mechanism to track the use of a variable by other processes/threads. Thereference counting
value is dropped when the count reaches zero, which provides for safe memory management.
Adiitionally, are available in Rust for data synchronisation across threads. References tomutexes
immutable data need not use .mutex

Async I/O: Async event-loop based non-blocking I/O concurrency primitives are built into the

RUST HAS LOW LATENCY

RUST ENABLES FEARLESS CONCURRENCY

10

1.

2.

3.

4.

5.

6.

Rust language with and . Non-blocking I/O ensures that code doeszero-cost futures async-await
not hang while waiting for data to be processed.

Further, Rust’s rules of immutability provide for high levels of data concurrency.

Even though Rust is first a systems-oriented programming language, it also adds the
quality-of-life features of higher-level and functional programming languages.

Here is a (non-exhaustive) list of a few higher-level abstractions in Rust that make for a
productive and delightful developer experience:

Closures with anonymous functions. These capture the environment and can be executed

elsewhere (in a different method or thread context). Anonymous functions can be stored

inside a variable and can be passed as parameters for functions and across threads.

Iterators

Generics and that provide for code generation and reusemacros

Enums such as and that are used to express success/failureOption Result

Polymorphism through traits

Dynamic dispatch through trait objects

Rust allows developers to build not just efficient, safe and performant software, but also
optimizes for developer productivity with its expressiveness. It is not without reason that Rust
has won the most loved Programming language in the StackOverflow developer survey for five
consecutive years: 2016- 2020. The survey can be accessed at:

. For more insights into why senior developershttps://insights.stackoverflow.com/survey/2020
love Rust, read this link: .https://stackoverflow.blog/../rust/

We have so far seen how Rust offers a unique combination of memory safety,
resource-efficiency, low latency, high concurrency and developer productivity. These impart
Rust with the characteristics of ,low-level control and speed of a system programming language
the and a very developer productivity of higher-level languages unique memory model without a

. Application backends and infrastructure services directly benefit from thesegarbage collector
characteristics in order to provide low-latency responses under high loads, while being highly
efficient in usage of system resources such as multi-core CPUs and memory. In the next
subsection, we will take a look at some of the limitations of Rust.

RUST IS A PRODUCTIVE LANGUAGE

11

https://insights.stackoverflow.com/survey/2020
https://stackoverflow.blog/2020/06/05/why-the-developers-who-use-rust-love-it-so-much/

1.

2.

3.

4.

5.

6.

When it comes to choice of programming languages, there is no , and noone-size-fits-all
language can be claimed to be suitable for all use cases. Further, due to the nature of
programming language design, what may be easy to do in one language could be difficult in
another. However, in the interest of providing a complete view to enable decision on using Rust
for the web, here are a few things one needs to be cognizant of:

Rust has a steep learning curve. It is definitely a bigger leap for people who are

newcomers to programming, or are coming from dynamic programming or scripting

languages. The syntax can be difficult to read at times, even for experienced developers.

There are some things that are harder to program in Rust compared to other languages -

for example, single and double linked lists. This is due to the way the language is

designed.

Rust compiler is slower than many other compiled languages, as of this writing. But

compilation speed has progressively improved over the last few years, and work is

underway to continually improve this.

Rust’s ecosystem of libraries and community is still maturing, compared to other

mainstream languages.

Rust developers are relatively harder to find and hire at scale.

Adoption of Rust in large companies and enterprises is still in early days. It does not yet

have a natural home to nurture it such as for Java, for Golang and Oracle Google

 for C#.Microsoft

In this section, we have seen the benefits and drawbacks of using Rust to develop application
backend services. In the next section, we will see a preview of the example application that we’ll
build in this book.

In this book, we will build web servers, web services and web applications in Rust, and
demonstrate concepts through a full-length example. Note that our goal is not to develop a

 or , but to learn how to use Rustfeature-complete architecture-complete distributed application
for the web domain.

We will preview the example application in the next subsection.

1.3 Visualizing the example application

WHAT DOES RUST NOT HAVE?

12

EzyTutors - A digital storefront for tutors
Are you a tutor with a unique skill or knowledge that you’d like to monetize? Do
you have the necessary time and resources to set up and manage your own web
site?
EzyTutors is just for you. Take your training business online in just a few
minutes.

We will build a digital storefront for tutors to publish their course catalogs online. Tutors can be
individuals or training businesses. The digital storefront will be a sales tool for tutors, not a
marketplace.

We’ve defined the product vision. Let’s now talk about the scope, followed by the technical
stack.

The storefront will allow tutors to register themselves and then sign in. They can create a course
offering and associate it with a course category. A web page with their course list will be
generated for each tutor, which they can then share on social media with their network. There
will also be a public website that will allow learners to search for courses, browse through
courses by tutor, and view course details.

Figure 1.2 shows the logical design of our example application.

1.3.1 What will be build?

13

Figure 1.2 Our example application

Our technical stack will be comprised of a web service , a server-rendered web app and a
client-rendered web app, all written in . The course data will be persisted in a relationalpure Rust
database. The tools used in this book are for the web framework, for databaseActix web SQLx
connections and for the database. Importantly, the design will be asynchronous all thePostgres
way. Both and support full asynchronous I/O, which is very suited for our webActix web SQLx
application workload that is more I/O heavy than computation-heavy.

We’ll first build a web service exposing RESTful APIs that connects to a database, and deals
with errors and failures in an application-specific manner. We’ll then simulate application
lifecycle changes by enhancing the data model, and adding additional functionality, which will
require refactoring of code and database migration. This exercise will demonstrate one of the key
strengths of Rust, i.e. the ability to fearlessly refactor the code (and reduce technical debt) with
the aid of a strongly-typed system and a strict but helpful compiler that has our back.

14

1.

2.

In addition to the web service, our example will demonstrate how to build two types of
front-ends in Rust - a and a . We’ll use aserver-rendered client app WASM-based in-browser app
template engine to render templates and forms for the . We’llserver-rendered web application
develop a using a Rust client-side web framework. This will be aWASM-based client front-end
welcome relief from a front-end world.javascript-centric

Our web application can be developed and deployed on any platform that Rust supports - Linux,
Windows and Mac OS. What this means is that we will not use any external library that restricts
usage to any specific computing platform. Our application will be capable of being deployed
either in a traditional server-based deployment, or in any cloud platform, either as a traditional
binary, or in a containerized environment (such as docker and kubernetes).

The chosen problem domain for the example application is a practical scenario, but is not
complex to understand. This allows us to focus on the core topic of the book, i.e., how to apply

. As a bonus, we’ll also strengthen understanding of Rust by seeing inRust to the web domain
action concepts such as traits, lifetimes, Result and Option, structs and enums, collections, smart
pointers, derivable traits, associated functions and methods, modules and workspaces, unit
testing, closures, and functional programming.

This book is about learning the foundations of web development in Rust. What is not covered in
this book are topics around how to configure and deploy additional infrastructural components
and tools such as reverse proxy servers, load balancers, firewalls, TLS/SSL, monitoring servers,
caching servers , Devops tools, CDNs etc, as these are not Rust-specific topics (but needed for
large-scale production deployments).

In addition to building business functionality in Rust, our example application will demonstrate
good development practices such as automated tests, code structuring for maintainability,
separating configuration from code, generating documentation, and of course, writing idiomatic
Rust.

Are you ready for some practical Rust on the web?

This isn’t a book about system architecture or software engineering theory. However, I would
like to enumerate a few foundational guidelines adopted in the book that will help you better
understand the rationale for the design choices made for the code examples in this book.

Project structure: We’ll make heavy use of the Rust module system to separate various

pieces of functionality, and keep things organized. We’ll use Cargo workspaces to group

related projects together, which can include both binaries and libraries.

Single Responsibility principle: Each logically-separate piece of application

1.3.2 Technical guidelines for the example application

15

2.

3.

4.

5.

6.

7.

functionality should be in its own module. For example, the handlers in the web tier

should only deal with processing HTTP messages. The business and database access

logic should be in separate modules.

Maintainability:

Variable and function names must be self-explanatory.

Keep formatting of code uniform using Rustfmt

Write automated test cases to detect and prevent regressions, as the code

evolves iteratively.

Project structure and file names must be intuitive to understand.

Security: In this book, we’ll cover API authentication using JWT, and password-based

user authentication. Infrastructure and network-level security are not covered. However,

it is important to recall that Rust inherently offers memory safety without a garbage

collector, and thread-safety that prevents race conditions, thus preventing several classes

of hard-to-find and hard-to-fix memory, concurrency and security bugs.

Application Configuration: Separating configuration from the application is a principle

adopted for the example project.

Usage of external crates: Keep usage of external crates to a minimum. For example,

custom error handling functionality is built from scratch in this book, rather than use

external crates that simplify and automate error handling. This is because taking

short-cuts using external libaries sometimes impedes the learning process and deep

understanding.

Async I/O: It is a deliberate choice to use libaries that support fully asynchronous I/O in

the example application, both for network communications and for database access.

Now that we’ve covered the topics we’ll be discussing in the book, the goals of the example
project, and the guidelines we’ll use to steer design choices, we can start digging into web
servers and web services: the topic of our next chapter.

16

Modern web applications are an indispensable component of digital lives and businesses.

But they are complex to build, deploy and operate.

Distributed web applications comprise , and application front-ends backend services

.distributed software infrastructure

Application backends and are composed of loosely coupled,software infrastructure

cooperative network-oriented services. These have specific run-time characteristics to be

satisfied, which have an impact on the tools and technologies used to build them.

Rust is a highly suitable language to develop distributed web applications, due to its

safety, concurrency, low latency and low hardware-resource footprint.

This book is suitable for readers who are considering Rust for distributed web application

development.

We overviewed the example application we will be building in this book. We also

reviewed the key technical guidelines adopted for the code examples in the book.

1.4 Summary

17

2
This chapter covers:

In this chapter, you will delve deep into TCP and HTTP communications using Rust.

These protocols are generally abstracted away for developers through higher-level libraries and
frameworks used to build web applications. So, why is it important to discuss low level
protocols? This would be a fair question.

Learning to work with TCP and HTTP is important because they form the foundation for most
communications on the Internet. Popular application communication protocols such as REST,
gRPC, websockets and TLS use HTTP and TCP for transport. Designing and building basic TCP
and HTTP servers in Rust gives the confidence to design, develop and troubleshoot higher-level
application backend services.

However, if you are eager to get started with the example application, you can move to Chapter
3, and later come back to this chapter at a time appropriate for you.

In this chapter, you will learn the following:

Write a TCP client and server.

Build a library to convert between TCP raw byte streams and HTTP messages.

Build an HTTP server that can serve static web pages (aka) as well as jsonweb server

data (aka). Test the server with standard HTTP clients such as cURLweb service

(commandline) tool and web browser.

Writing a basic web server from scratch

Writing a TCP server in Rust
Writing an HTTP server in Rust

18

Through this exercise, you will understand how Rust data types and traits can be used to model a
real-world network protocol, and strengthen your fundamentals of Rust.

The chapter is structured into two sections. In the first section, you will develop a basic network
server in Rust that can communicate over TCP/IP. In the second section, you will build a web
server that responds to GET requests for web pages and json data. You will achieve all this using
just the Rust standard library (no external crates). The HTTP server that you are going to build is
not intended to be full-featured or production-ready. But it will serve our stated purpose.

Let’s get started.

We spoke about modern applications being constructed as a set of independent components and
services, some belonging to the front-end, some backend and some part of the distributed
software infrastructure.

Whenever we have separate components, the question arises as to how these components talk to
each other. How does the client (web browser or mobile app) talk to the backend service? How
do the backend services talk to the software infrastructure such as databases? This is where the

 model comes in.networking

A model describes how communication takes place between the sender of a messagenetworking
and its receiver. It addresses questions such as , in what format the message should be sent and
received, how the message should be broken up into bytes for physical data transmission, how
errors should be handled if data packets do not arrive at the destination etc. The model is theOSI
most popular networking model, and is defined in terms of a comprehensive seven-layered
framework. But for purposes of internet communications, a simplified four-layer model called
the is more often adequate to describe how communications take place over theTCP/IP model
internet between the client making a request and the server that processes that request. The
TCP/IP model is described here ().https://www.w3.org/../TcpIp.html

The is a simplified set of standards and protocols for communications over theTCP/IP model
internet. It is organized into four abstract layers: Network Access layer, Internet Layer, Transport
Layer and the Application layer, with flexibility on wire protocols that can be used in each layer.
The model is named after the two main protocols it is built on- Transmission Control Protocol
(TCP) and Internet Protocol(IP). This is shown in figure 2.1. The main thing to note is that these
four layers complement each other in ensuring that a message is sent successfully from the
sending process to the receiving process.

19

https://www.w3.org/People/Frystyk/thesis/TcpIp.html

Figure 2.1 TCP/IP network model

We will now look at the role of each of these four layers in communications.

The is the highest layer of abstraction. The semantics of the message areApplication layer
understood by this layer. For example, a web browser and web server communicate using HTTP,
or an email client and email server communicate using SMTP(Simple Mail Transfer Protocol).
There are other such protocols such as DNS (Domain Name Service) and FTP (File Transfer
Protocol). All these are called application-layer protocols because they deal with specific user
applications - such as web browsing, emails or file transfers.In this book, we will focus mainly on
the HTTP protocol at the application layer.

The provides reliable end-to-end communication. While the application layerTransport layer
deals with messages that have specific semantics (such as sending a GET request to get shipment
details), the transport protocols deal with sending and receiving raw bytes. (Note: all application
layer protocol messages eventually get converted into raw bytes for transmission by the transport
layer). TCP and UDP are the two main protocols used in this layer, with QUIC (Quick UDP
Internet Connection) also being a recent entrant. TCP is a connection-oriented protocol that
allows data to be partitioned for transmission and reassembled in a reliable manner at the
receiving end. UDP is a connectionless protocol and does not provide guarantees on delivery,
unlike TCP. UDP is consequently faster and suitable for certain class of applications eg DNS
lookups, voice or video applications.In this book, we will focus on the TCP protocol for transport
layer.

The uses IP addresses and routers to locate and route packets of information toNetwork layer
hosts across networks. While the TCP layer is focused on sending and receiving raw bytes
between two servers identified by their IP addresses and port numbers, the network layer worries

20

about what is the best path to send data packets from source to destination. We do not need to
directly work with the network layer as Rust’s standard library provides the interface to work
with TCP and sockets, and handles the internals of network layer communications.

The is the lowest layer of the TCP/IP network model. It is responsible forNetwork Access layer
transmission of data through a physical link between hosts, such as by using network cards.For
our purposes, it does not matter what physical medium is used for network communications.

Now that we have an overview of the TCP/IP networking model, we’ll learn how to use the
TCP/IP protocol to send and receive messages in Rust.

In this section, you will learn how to perform basic TCP/IP networking communications in Rust,
fairly easily. Let’s start by understanding how to use the TCP/IP constructs in the Rust standard
library.

The Rust standard library provides networking primitives through the module for whichstd::net
documentation can be found at: . This module supports basichttps://doc.rust-lang.org/std/net/
TCP and UDP communications. There are two specific data structures, and TcpListener

, which have the bulk of the methods needed to implement our scenario.TcpStream

Let us see how to use these two data structures.

TcpListener is used to create a TCP socket server that binds to a specific port. A client can send a
message to a socket server at the specified socket address (combination of IP address of the
machine and port number). There may be multiple TCP socket servers running on a machine.
When there is an incoming network connection on the network card, the operating system routes
the message to the right TCP socket server using the port number.

Example code to create a socket server is shown here.

After binding to a port, the socket server should start to listen for the next incoming connection.
This is achieved as shown here:

For listening continually (in a loop) for incoming connections, the following method is used:

2.1 Writing a TCP server in Rust

2.1.1 Designing the TCP/IP communication flow

use std::net::TcpListener;

let listener = TcpListener::bind("127.0.0.1:80")

listener.accept()

listener.incoming()

21

https://doc.rust-lang.org/std/net/

The method returns an iterator over the connections received on this listener.listener.incoming()
Each connection represents a stream of bytes of type . Data can be transmitted orTcpStream
received on this object. Note that reading and writing to TcpStream is done in rawTcpStream
bytes. Code snippet is shown next.(Note: error handling is excluded for simplicity)

Note that

for , we have constructed a bytes buffer (called in Rust).reading from a stream byte slice

for , we have constructed a and converted it to a writing to a stream string slice byte slice

using methodas_bytes()

So far, we’ve seen the server side of TCP socket server. On the client side, a connection can be
established with the TCP socket server as shown:

To recap, functions are available from the struct of the connection management TcpListener
 module. To read and write on a connection, struct is used.std::net TcpStream

Let’s now apply this knowledge to write a working TCP client and server.

Let’s first setup a project structure . shows the workspace called whichFigure 2.2 scenario1
contains four projects - , , and .tcpclient tcpserver http httpserver

For Rust projects, a is a container project which other projects. The benefit ofworkspace holds
the structure is that it enables us to manage multiple projects as one unit. It also helpsworkspace
to store all related projects seamlessly within a single git repo. We will create a workspace
project called . Under this workspace, we will create four new Rust projects using scenario1

, the Rust project build and dependencies tool. The four project are , , cargo tcpclient tcpserver
 and .http httpserver

for stream in listener.incoming() {
 //Read from stream into a bytes buffer
 stream.read(&mut [0;1024]);
 // construct a message and write to stream
 let message = "Hello".as_bytes();
 stream.write(message)
}

let stream = TcpStream.connect("172.217.167.142:80")

2.1.2 Writing the TCP server and client

22

Figure 2.2 Cargo workspace project

The commands for creating the workspace and associated projects are listed here.

Start a new cargo project with:

The directory can also be referred to as the workspace root.scenario1

Under directory, create the following three new Rust projects:scenario1

tcpserver will be the project for TCP server codebinary

tcpclient will be the project for TCP client codebinary

httpserver will be the project for HTTP server codebinary

http will be the project for http protocol functionalitylibrary

Now that the projects are created, we have to declare project as a workspace andscenario1
specify its relationship with the four subprojects. Add the following:

scenario1/Cargo.toml

cargo new scenario1 && cd scenario1

cargo new tcpserver
cargo new tcpclient
cargo new httpserver
cargo new --lib http

[workspace]
members = [

23

1.

2.

We will now write the code for TCP server and client in two iterations:

In the first iteration, we will write the TCP server and client to do a sanity check that

connection is being established from client to server.

In the second iteration, we will send a text from client to server and have the server echo

it back.

Go to folder and modify as follows:tcpserver src/main.rs

Listing 2.1 First iteration of TCP server

Initialize a socket server to bind to IP address 127.0.0.1(localhost) and port 3000

The socket server waits (listens) for incoming connections

When a new connection comes in, it is of type , whichResult<TcpStream,Error>
when unwrapped returns a if successful, or exits the program with aTcpStream
panic, in case of connection error.

From root folder of workspace (), run :scenario1

-p argument specifies which package in workspace we want to run

The server will start and the message is printed to the terminal. We nowRunning on port 3000
have a working TCP server listening on port 3000 on localhost.

Let’s next write a TCP client to establish connection with the TCP server.

tcpclient/src/main.rs

 "tcpserver","tcpclient", "http", "httpserver",
]

ITERATION 1

use std::net::TcpListener;

fn main() {
 let connection_listener = TcpListener::bind("127.0.0.1:3000").unwrap();
 println!("Running on port 3000");
 for stream in connection_listener.incoming() {
 let _stream = stream.unwrap();
 println!("Connection established");
 }
}

cargo run -p tcpserver

use std::net::TcpStream;

fn main() {
 let _stream = TcpStream::connect("localhost:3000").unwrap();

24

The TCP client initiates a connection to remote server running on localhost:3000.

In a new terminal, from root folder of workspace, run :

You will see the message "connection established" printed to terminal where the TCP server is
running as shown:

We now have a TCP server running on port 3000, and a TCP client that can establish connection
to it.

We now can try sending a message from our client and have the server echo it back.

Modify the file as follows:tcpserver/src/main.rs

Listing 2.2 Completing the TCP server

TcpStream implements Read and Write traits. So include std::io module to bring
Read and Write traits into scope

Make the stream mutable so you can read and write to it.

Read from incoming stream

Echo back whatever is received , to the client on the same connection

In the code shown, we are echoing back to the client, whatever we receive from it. Run the TCP
server with from workspace root directory.cargo run -p tcpserver

 let _stream = TcpStream::connect("localhost:3000").unwrap();
}

cargo run -p tcpclient

Running on port 3000
Connection established

ITERATION 2:

use std::io::{Read, Write};
use std::net::TcpListener;
fn main() {
 let connection_listener = TcpListener::bind("127.0.0.1:3000").unwrap();
 println!("Running on port 3000");
 for stream in connection_listener.incoming() {
 let mut stream = stream.unwrap();
 println!("Connection established");
 let mut buffer = [0; 1024];
 stream.read(&mut buffer).unwrap();
 stream.write(&mut buffer).unwrap();
 }
}

25

Read and Write traits
Traits in Rust define shared behaviour. They are similar to in otherinterfaces
languages, with some differences. The Rust standard library() defines severalstd
traits that are implemented by data types within . These traits can also bestd
implemented by user-defined data types such as and .structs enums
Read and are two such traits defined in the Rust standard library.Write
Read trait allows for reading bytes from a source. Examples of sources that
implement the trait include , (standard input), and .Read File Stdin TcpStream
Implementors of the trait are required to implement one method - .Read read()
This allows us to use the same method to read from a , , read() File Stdin TcpStream
or any other type that implements the trait.Read
Similarly, the trait represents objects that are byte-oriented sinks.Write
Implementors of the trait implement two methods - and .Write write() flush()
Examples of types that implement the trait include , , and Write File Stderr Stdout

. This trait allows us to write to either a , , TcpStream File standard output standard
 or using the method.error TcpStream write()

The next step is to modify TCP client to send a message to the server, and then print what is
received back from the server. Modify the file as follows:tcpclient/src/main.rs

Listing 2.3 Completing the TCP client

Write a "Hello" message to the TCP server connection

Read the bytes received from server

Print out what is received from server. The server sends raw bytes and we have to
convert it into UTF-8 str type to print it to terminal.

Run the TCP client with from the workspace root. Make sure that thecargo run -p tcpclient
TCP Server is also running in another terminal window.

use std::io::{Read, Write};
use std::net::TcpStream;
use std::str;

fn main() {
 let mut stream = TcpStream::connect("localhost:3000").unwrap();
 stream.write("Hello".as_bytes()).unwrap();
 let mut buffer = [0; 5];
 stream.read(&mut buffer).unwrap();
 println!(
 "Got response from server:{:?}",
 str::from_utf8(&buffer).unwrap()
);
}

26

You will see the following message printed to the terminal window of the TCP client:

Congratulations. You have written a TCP server and a TCP client that can communicate with
each other.

Result type and unwrap() mehod
In Rust, it is idiomatic for a function or method that can fail to return a

 type. This means the type wraps another data type in case ofResult<T,E> Result T
success, or wraps an type in case of failure, which is then returned to theError
calling function. The calling function in turn inspects the type and unwrapsResult
it to receive either the value of type or type for further processing.T Error
In the examples so far, we have made use of the method in severalunwrap()
places, to retrieve the value embedded within the Result object by the standard
library methods. method returns the value of type T if operation isunwrap()
successful , or panics in case of error. In a real-world application, this is not the
right approach, as type in Rust is for recoverable failures, while panic isResult
used for unrecoverable failures. However, we have used it because use of unwrap()
simplifies our code for learning purposes. We will cover proper error handling in
later chapters.

In this section, we have learnt how to do TCP communications in Rust. You have also noticed
that TCP is a low-level protocol which only deals in byte streams. It does not have any
understanding of the semantics of messages and data being exchanged. For writing web
applications, semantic messages are easier to deal with than raw byte streams. So, we need to
work with a higher-level application protocol such as HTTP, rather than TCP. This is what we
will look at in the next section.

In this section, we’ll build a web server in Rust that can communicate with HTTP messages.

But Rust does not have built-in support for HTTP. There is no module that we canstd::http
work with. Even though there are third-party HTTP crates available, we’ll write one from
scratch. Through this, we will learn how to apply Rust for developing lower-level libraries and
servers, that modern web applications in turn rely upon.

Let’s first visualize the features of the web server that we are going to build. The communication
flow between the client and the various modules of the web server is depicted in figure 2.3.

2.2 Writing an HTTP server in Rust

Got response from server:"Hello"

27

Figure 2.3 Web server message flow

Our Web server will have four components - , , and . Each ofServer Router Handler HTTP library
these components has a specific purpose, in line with (SRP). The Single Responsibility Principle

 listens for incoming TCP byte streams. The interprets the byte stream andServer HTTP library
converts it to (message). The accepts an and determinesHTTP Request router HTTP Request
which handler to invoke. The processes the and constructs an handler HTTP request HTTP

. The message is converted back to byte stream using HTTP library,response HTTP response
which is then sent back to client.

Figure 2.4 shows another view of the HTTP client-server communications, this time depicting
how the HTTP messages flow through the . The TCP/IP communicationsTCP/IP protocol stack
are handled at the operating system level both at the client and server side, and a web application
developer only works with HTTP messages.

28

Figure 2.4 HTTP communications with protocol stack

Let’s build the code in the following sequence:

Build the HTTP library

Write the function for the projectmain()

Write the moduleserver

Write the modulerouter

Write the modulehandler

For convenience, shows a summary of the code design, showing the key modules,figure 2.5
structs and methods for the library and project.http httpserver

29

Figure 2.5 Design overview of web server

We’ll be writing code for the modules, structs and methods shown in this figure. Here is a short
summary of what each component in the figure does:

http: Library containing types and . It implements the logicHttpRequest HttpResponse

for converting between HTTP requests and responses, and corresponding Rust data

structures.

httpserver: Main web server that incorporates a main() function, socket server, handler

and router, and manages the coordinations among them. It serves as both a web server

(serving html) and a web service(serving json).

Shall we get started?

30

In this section we will build an HTTP library. The library will contain data structures and
methods to do the following:

Interpret an incoming byte stream and convert it into an HTTP Request message

Construct an HTTP response message and convert it into a byte stream for transmitting

over the wire

We are now ready to write some code.

General note about following along with the code
Many of the code snippets shown in this chapter (and across the book) have inline
numbered code annotations to describe the code. If you are copying and pasting
code (from any chapter in this book) into your code editor, ensure to remove the
code annotation numbers (or the program will not compile). Also, the pasted code
may sometimes be misaligned, so manual verification may be needed to compare
pasted code with the code snippets in the chapter, in case of compilation errors.

Recall that we have already created a library called under workspace.http scenario1

The code for HTTP library will be placed under folder.http/src

In , add the following code:http/src/lib.rs

This tells compiler that we are creating a new publicly-accessible module called inhttprequest
the library.http

Also, delete the pre-generated test script (by cargo tool) from this file. We’ll write test cases
later.

Create two new files and under , to contain thehttprequest.rs httpresponse.rs http/src
functionality to deal with HTTP requests and responses respectively.

We will start with designing the Rust data structures to hold an HTTP request. When there is an
incoming byte stream over a TCP connection, we will parse it and convert it into strongly-typed
Rust data structures for further processing. Our HTTP server program can then work with these
Rust data structures, rather than with TCP streams.

Table 1 shows a summary of Rust data structures needed to represent an incoming HTTP
request:

2.2.1 Parsing HTTP request messages

pub mod httprequest;

31

We’ll implement a few traits on these data structures, to impart some behaviour. shows aTable 2
description of the traits we will implement on the three data structures.

Let’s now convert this design into code. We’ll write the data structures and methods.

We will code the enum and trait implementations here.Method

Add the following code to .http/src/httprequest.rs

The code for enum is shown here. We use an enum data structure as we want to allowMethod
only predefined values for the HTTP method in our implementation. We will only support two
HTTP methods in this version of implementation- and requests. We’ll also add aGET POST
third type - , to be used during initialization of data structures in the runningUninitialized
program.

Add the following code to :http/src/httprequest.rs

The trait implementation for is shown here (to be added to):Method httprequest.rs

Table 2.1 Table showing the list of data structures we will be building.m
Data structure name Rust data type Description

HttpRequest struct Represents an HTTP request

Method enum Specifies the allowed values (variants) for HTTP Methods

Version enum Specifies allowed values for HTTP Versions

Table 2.2 Table showing the list of trait implemented by the data structures for HTTPm
request.
Rust trait implemented Description

From<&str> This trait enables conversion of incoming string slice into data structureHttpRequest

Debug Used to print debug messages

PartialEq Used to compare values as part of parsing and automated test scripts

METHOD

#[derive(Debug, PartialEq)]
pub enum Method {
 Get,
 Post,
 Uninitialized,
}

impl From<&str> for Method {
 fn from(s: &str) -> Method {
 match s {
 "GET" => Method::Get,
 "POST" => Method::Post,
 _ => Method::Uninitialized,

32

Implementing the method in trait enables us to read the string from thefrom From method
HTTP request line, and convert it into or variant. In order toMethod::Get Method::Post
understand the benefit of implementing this trait and to test if this method works, let’s write
some test code. Add the following to :http/src/httprequest.js

From the workspace root, run the following command:

You will notice a message similar to this stating that the test has passed.

The string "GET" is converted into variant using just the syntax, which isMethod::Get .into()
the benefit of implementing the trait. It makes for clean, readable code.From

Let’s now look at the code for the enum.Version

The definition of enum is shown next. We will support two HTTP versions just forVersion
illustration though we will be working only with HTTP/1.1 for our examples. There is also a
third type - , to be used as default initial value.Uninitialized

Add the following code to :http/src/httprequest.rs

The trait implementation for is similar to that for enum (to be added to Version Method

 }
 }
}

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn test_method_into() {
 let m: Method = "GET".into();
 assert_eq!(m, Method::Get);
 }
}

cargo test -p http

running 1 test
test httprequest::tests::test_method_into ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

VERSION

#[derive(Debug, PartialEq)]
pub enum Version {
 V1_1,
 V2_0,
 Uninitialized,
}

33

).httprequest.rs

Implementing the method in trait enables us to read the HTTP protocol version fromfrom From
the incoming HTTP request, and convert it into a variant.Version

Let’s test if this method works. Add the following to inside thehttp/src/httprequest.js
previously-added block (after the function), and run the test frommod tests test_method_into()
the workspace root with :cargo test -p http

You will see the following message on your terminal:

Both the tests pass now. The string "HTTP/1.1" is converted into variant usingVersion::V1_1
just the syntax, which is the benefit of implementing the trait..into() From

This represents the complete HTTP request. The structure is shown in code here. Add this code
to the beginning of the file .http/src/httprequest.rs

impl From<&str> for Version {
 fn from(s: &str) -> Version {
 match s {
 "HTTP/1.1" => Version::V1_1,
 _ => Version::Uninitialized,
 }
 }
}

#[test]
fn test_version_into() {
 let m: Version = "HTTP/1.1".into();
 assert_eq!(m, Version::V1_1);
}

running 2 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

HTTPREQUEST

34

Listing 2.4 Structure of HTTP request

The trait implementation for struct is at the core of our exercise. WhatFrom<&str> HttpRequest
this enables us to do is to convert the incoming request into a Rust HTTP Request data structure
that is convenient to process further.

Figure 2.6 shows the structure of a typical HTTP request.

use std::collections::HashMap;

#[derive(Debug, PartialEq)]
pub enum Resource {
 Path(String),
}

#[derive(Debug)]
pub struct HttpRequest {
 pub method: Method,
 pub version: Version,
 pub resource: Resource,
 pub headers: HashMap<String, String>,
 pub msg_body: String,
}

35

1.

2.

Figure 2.6 Structure of HTTP request

The figure shows a sample HTTP request consisting of a request line, a set of one or more header
lines followed by a blank line, and then an optional message body. We’ll have to parse all these
lines and convert them into our HTTPRequest type. That is going to be the job of the from()
function as part of the trait implementation.From<&str>

The core logic for the trait implementation is listed here:From<&str>

Read each line in incoming HTTP request. Each line is delimited by CRLF (\r\n).

Evaluate each line as follows:

If the line is a request line (we are looking for the keyword to check if it is requestHTTP

line as all request lines contain HTTP keyword and version number), extract the method,

path and HTTP version from the line.

If line is a header line (identified by separator ':'), extract and for the headerkey value

36

2.

item and add them to list of headers for request. Note there can be multiple header lines

in an HTTP request. To keep things simple, let’s make the assumption that the and key

 must be composed of printable ASCII characters (i.e., characters that have valuesvalue

between 33 and 126 in base 10, except colon).

If line is empty (\n\r), then treat it as separator line. No action is needed in this case

If message body is present, then scan and store it as String.

Add the following code to .http/src/httprequest.rs

Let’s look at the code in smaller chunks. First, here is the skeleton of the code. Don’t type this in
yet, this is just to show the structure of code.

We have a method that we should implement for the trait. There are two otherfrom() From
supporting functions for parsing request line and header lines respectively.

Let’s first look at the method. Add the following to .from() httprequest.rs

impl From<String> for HttpRequest {
 fn from(req: String) -> Self {}
}
fn process_req_line(s: &str) -> (Method, Resource, Version) {}
fn process_header_line(s: &str) -> (String, String) {}

37

Listing 2.5 Parsing incoming HTTP requests: from() method

Based on the logic described earlier, we are trying to detect the various types of lines in the
incoming HTTP Request, and then constructing an struct with the parsed values.HTTPRequest
We’ll look at the two supporting methods next.

Here is the code for processing the request line of the incoming request. Add it to ,httprequest.rs
after the block.impl From<String> for HttpRequest {}

impl From<String> for HttpRequest {
 fn from(req: String) -> Self {
 let mut parsed_method = Method::Uninitialized;
 let mut parsed_version = Version::V1_1;
 let mut parsed_resource = Resource::Path("".to_string());
 let mut parsed_headers = HashMap::new();
 let mut parsed_msg_body = "";

 // Read each line in incoming HTTP request
 for line in req.lines() {
 // If the line read is request line, call function process_req_line()
 if line.contains("HTTP") {
 let (method, resource, version) = process_req_line(line);
 parsed_method = method;
 parsed_version = version;
 parsed_resource = resource;
 // If the line read is header line, call function process_header_line()
 } else if line.contains(":") {
 let (key, value) = process_header_line(line);
 parsed_headers.insert(key, value);
 // If it is blank line, do nothing
 } else if line.len() == 0 {
 // If none of these, treat it as message body
 } else {
 parsed_msg_body = line;
 }
 }
 // Parse the incoming HTTP request into HttpRequest struct
 HttpRequest {
 method: parsed_method,
 version: parsed_version,
 resource: parsed_resource,
 headers: parsed_headers,
 msg_body: parsed_msg_body.to_string(),
 }
 }
}

38

Listing 2.6 Parsing incoming HTTP requests: process_req_line() function

And here is the code for parsing the header line. Add it to after httprequest.rs process_req_line()
function.

Listing 2.7 Parsing incoming HTTP requests: process_header_line() function

This completes the code for the trait implementation for the struct.From HTTPRequest

Let’s write a unit test for the HTTP request parsing logic in , inside http/src/httprequest.rs mod
 (tests module). Recall that we’ve already written the test functions and tests test_method_into()

 in the module. The module should look like this at this point in test_version_into() tests tests
 file:httprequest.rs

fn process_req_line(s: &str) -> (Method, Resource, Version) {
 // Parse the request line into individual chunks split by whitespaces.
 let mut words = s.split_whitespace();
 // Extract the HTTP method from first part of the request line
 let method = words.next().unwrap();
 // Extract the resource (URI/URL) from second part of the request line
 let resource = words.next().unwrap();
 // Extract the HTTP version from third part of the request line
 let version = words.next().unwrap();

 (
 method.into(),
 Resource::Path(resource.to_string()),
 version.into(),
)
}

fn process_header_line(s: &str) -> (String, String) {
 // Parse the headerline into words split by separator (':')
 let mut header_items = s.split(":");
 let mut key = String::from("");
 let mut value = String::from("");
 // Extract the key part of the header
 if let Some(k) = header_items.next() {
 key = k.to_string();
 }
 // Extract the value part of the header
 if let Some(v) = header_items.next() {
 value = v.to_string()
 }

 (key, value)
}

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn test_method_into() {
 let m: Method = "GET".into();

39

Now add another test function to the same module in the file, after the tests test_version_into()
function.

Listing 2.8 Test scripts for parsing HTTP requests

Simulate incoming HTTP request

Construct expected headers list

Parse the entire incoming multi-line HTTP request into HttpRequest struct

Verify if method is parsed correctly

Verify if HTTP version is parsed correctly

Verify if the path (resource URI) is parsed correctly

Verify if headers are parsed correctly

Run the test with from the workspace root folder.cargo test -p http

You should see the following message indicating that all the three tests have passed:

We have completed the code for HTTP request processing. This library is able to parse an
incoming HTTP GET or POST message, and convert it into a Rust data struct.

 assert_eq!(m, Method::Get);
 }
 #[test]
 fn test_version_into() {
 let m: Version = "HTTP/1.1".into();
 assert_eq!(m, Version::V1_1);
 }
}

#[test]
fn test_read_http() {
 let s: String = String::from("GET /greeting HTTP/1.1\r\nHost: localhost:3000\r\nUser-Agent:
 curl/7.64.1\r\nAccept: */*\r\n\r\n");
 let mut headers_expected = HashMap::new();
 headers_expected.insert("Host".into(), " localhost".into());
 headers_expected.insert("Accept".into(), " */*".into());
 headers_expected.insert("User-Agent".into(), " curl/7.64.1".into());
 let req: HttpRequest = s.into();
 assert_eq!(Method::Get, req.method);
 assert_eq!(Version::V1_1, req.version);
 assert_eq!(Resource::Path("/greeting".to_string()), req.resource);
 assert_eq!(headers_expected, req.headers);
}

running 3 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok
test httprequest::tests::test_read_http ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

40

Let’s now write the code to process HTTP responses.

Let’s define a struct which will represent the HTTP Response message withinHTTPResponse
our program. We will also write a method to convert this struct (serialize) into a well-formed
HTTP message that can be understood by an HTTP client (such as a web browser).

Let’s first recap the structure of an HTTP Response message. This will help us define our struct.

Figure 2.7 shows the structure of a typical HTTP response.

Figure 2.7 Structure of HTTP response

First create a file , if not created earlier. Add to the modulehttp/src/httpresponse.rs httpresponse
exports section of , to look like this:http/lib.rs

2.2.2 Constructing HTTP response messages

pub mod httprequest;
pub mod httpresponse;

41

1.

2.

3.

4.

5.

Add the following code to .http/src/httpresponse.rs

Listing 2.9 Structure of HTTP response

The struct contains a protocol version, status code, status description, a list ofHttpResponse
optional headers and an optional body. Note the use of lifetime annotation for all the member'a
fields that are of reference types.

Lifetimes in Rust
In Rust, every reference has a lifetime, which is the scope for which the reference
is valid. Lifetimes in Rust are an important feature aimed at preventing dangling

 and errors that are common in languages withpointers use-after-free
manually-managed memory (such as C/C++). The Rust compiler either infers (if
not specified) or uses (if specified) the lifetime annotation of a reference to verify
that a reference does not outlive the inderlying value it points to.

Also note the use of annotation for traits , and . These are called#[derive] Debug PartialEq Clone
 traits, because we are asking the compiler to derive the implementation of these traitsderivable

for our struct. By implementing these traits, our struct acquires the ability to beHttpResponse
printed out for debugging purposes, can have its member values compared with other values, and
have itself cloned.

The list of methods that we will implement for the struct is shown here:HttpResponse

 trait implementationDefault : We earlier auto-derived a few traits using #[derive]

annotation. We’ll now manually implement the trait. This lets us specify defaultDefault

values for the struct members.

Method new(): This method creates a new struct with default values for its members.

Method send_response(): This method serializes the contents of the into aHttpStruct

valid HTTP response message for on-the-wire transmission, and sends the raw bytes over

the TCP connection.

Getter methods: We’ll also implement a set of getter methods for , , version status_code

, and , which are the member fields of the struct .status_text headers body HttpResponse

use std::collections::HashMap;
use std::io::{Result, Write};

#[derive(Debug, PartialEq, Clone)]
pub struct HttpResponse<'a> {
 version: &'a str,
 status_code: &'a str,
 status_text: &'a str,
 headers: Option<HashMap<&'a str, &'a str>>,
 body: Option<String>,
}

42

5. trait implementationFrom : Lastly, we will implement the trait that helps usFrom

convert struct into a type representing a valid HTTP responseHttpResponse String

message.

Let’s add the code for all these under .http/src/httpresponse.rs

We’ll start with the Default trait implementation for HttpResponse struct.

Listing 2.10 Default trait implementation for HTTP response

Implementing Default trait allows us to do the following to create a new struct with default
values:

The method accepts a few parameters , sets the default for the others and returns a new()
 struct. Add the following code under block of struct. As thisHttpResponse impl HttpResponse

struct has a reference type for one of its members, the block declaration has to also specify aimpl
lifetime parameter (shown here as).'a

DEFAULT TRAIT IMPLEMENTATION

impl<'a> Default for HttpResponse<'a> {
 fn default() -> Self {
 Self {
 version: "HTTP/1.1".into(),
 status_code: "200".into(),
 status_text: "OK".into(),
 headers: None,
 body: None,
 }
 }
}

let mut response: HttpResponse<'a> = HttpResponse::default();

NEW() METHOD IMPLEMENTATION

43

Listing 2.11 new() method for HttpResponse ()httpresponse.rs

The method starts by constructing a struct with default parameters. The values passed asnew()
parameters are then evaluated and incorporated into the struct.

The method is used to convert the struct into a String, andsend_response() HttpResponse
transmit it over the TCP connection. This can be added within the block, after the impl new()
method in .httpresponse.rs

This method accepts a TCP Stream as input, and writes the well-formed HTTP Response
message to the stream.

impl<'a> HttpResponse<'a> {
 pub fn new(
 status_code: &'a str,
 headers: Option<HashMap<&'a str, &'a str>>,
 body: Option<String>,
) -> HttpResponse<'a> {
 let mut response: HttpResponse<'a> = HttpResponse::default();
 if status_code != "200" {
 response.status_code = status_code.into();
 };
 response.headers = match &headers {
 Some(_h) => headers,
 None => {
 let mut h = HashMap::new();
 h.insert("Content-type", "text/html");
 Some(h)
 }
 };
 response.status_text = match response.status_code {
 "200" => "OK".into(),
 "400" => "Bad Request".into(),
 "404" => "Not Found".into(),
 "500" => "Internal Server Error".into(),
 _ => "Not Found".into(),
 };
 response.body = body;

 response
 }
}

SEND_RESPONSE() METHOD

impl<'a> HttpResponse<'a> {
 // new() method not shown here
 pub fn send_response(&self, write_stream: &mut impl Write) -> Result<()> {
 let res = self.clone();
 let response_string: String = String::from(res);
 let _ = write!(write_stream, "{}", response_string);
 Ok(())
 }
}

44

Let’s write getter methods for each of the members of the struct. We need these to construct the
HTML response message in .httpresponse.rs

Listing 2.12 Getter methods for HttpResponse

The getter methods allow us to convert the data members into string types.

Lastly, let’s implement the method that will be used to convert (serialize) structHTTPResponse
into an HTTP response message string, in .httpresponse.rs

GETTER METHODS FOR HTTP RESPONSE STRUCT

impl<'a> HttpResponse<'a> {
 fn version(&self) -> &str {
 self.version
 }
 fn status_code(&self) -> &str {
 self.status_code
 }
 fn status_text(&self) -> &str {
 self.status_text
 }
 fn headers(&self) -> String {
 let map: HashMap<&str, &str> = self.headers.clone().unwrap();
 let mut header_string: String = "".into();
 for (k, v) in map.iter() {
 header_string = format!("{}{}:{}\r\n", header_string, k, v);
 }
 header_string
 }
 pub fn body(&self) -> &str {
 match &self.body {
 Some(b) => b.as_str(),
 None => "",
 }
 }
}

FROM TRAIT

45

Listing 2.13 Code to serialize Rust struct into HTTP Response message

Note the use of in format string. This is used to insert a new line character. Recall that the\r\n
HTTP response message consists of the following sequence: status line, headers, blank line and
optional message body.

Let’s write few unit tests. Create a test module block as shown and add each test to this block.
Don’t type this in yet, this is just to show the structure of test code.

We’ll first check for construction of HTTP respone struct for message with status code of 200
(Success).

Add the following to towards the end of the file.httpresponse.rs

impl<'a> From<HttpResponse<'a>> for String {
 fn from(res: HttpResponse) -> String {
 let res1 = res.clone();
 format!(
 "{} {} {}\r\n{}Content-Length: {}\r\n\r\n{}",
 &res1.version(),
 &res1.status_code(),
 &res1.status_text(),
 &res1.headers(),
 &res.body.unwrap().len(),
 &res1.body()
)
 }
}

#[cfg(test)]
mod tests {
 use super::*;
 // Add unit tests here. Each test needs to have a #[test] annotation
}

46

Listing 2.14 Test script for HTTP success (200) message

We’ll test one for 404 (page not found) HTTP message. Add the following test case the within
 block, after the test function :mod tests {} test_response_struct_creation_200()

Listing 2.15 Test script for 404 message

Lastly, we’ll check if the HTTP response struct is being serialized correctly into an on-the-wire
HTTP response message in right format. Add the following test the block,within mod tests {}

#[cfg(test)]
mod tests {
 use super::*;
#[test]
 fn test_response_struct_creation_200() {
 let response_actual = HttpResponse::new(
 "200",
 None,
 Some("Item was shipped on 21st Dec 2020".into()),
);
 let response_expected = HttpResponse {
 version: "HTTP/1.1",
 status_code: "200",
 status_text: "OK",
 headers: {
 let mut h = HashMap::new();
 h.insert("Content-type", "text/html");
 Some(h)
 },
 body: Some("Item was shipped on 21st Dec 2020".into()),
 };
 assert_eq!(response_actual, response_expected);
 }
}

#[test]
fn test_response_struct_creation_404() {
 let response_actual = HttpResponse::new(
 "404",
 None,
 Some("Item was shipped on 21st Dec 2020".into()),
);
 let response_expected = HttpResponse {
 version: "HTTP/1.1",
 status_code: "404",
 status_text: "Not Found",
 headers: {
 let mut h = HashMap::new();
 h.insert("Content-type", "text/html");
 Some(h)
 },
 body: Some("Item was shipped on 21st Dec 2020".into()),
 };
 assert_eq!(response_actual, response_expected);
}

47

after the test function .test_response_struct_creation_404()

Listing 2.16 Test script to check for well-formed HTTP response message

Let’s run the tests now. Run the following from workspace root:

You should see the following message showing that 6 tests have passed in http module. Note this
includes tests for both HTTP request and HTTP response modules.

If the test fails, check for any typos or misalignment in the code (if you had copy pasted it). In
particular re-check the following string literal (which is quite long and prone to mistakes):

If you are still having trouble executing the tests, refer back to the git repo.

This completes the code for the library. Let’s recall the design of the http server, shownhttp
again in .figure 2.8

#[test]
fn test_http_response_creation() {
 let response_expected = HttpResponse {
 version: "HTTP/1.1",
 status_code: "404",
 status_text: "Not Found",
 headers: {
 let mut h = HashMap::new();
 h.insert("Content-type", "text/html");
 Some(h)
 },
 body: Some("Item was shipped on 21st Dec 2020".into()),
 };
 let http_string: String = response_expected.into();
 let response_actual = "HTTP/1.1 404 Not Found\r\nContent-type:text/html\r\nContent-Length:
 33\r\n\r\nItem was shipped on 21st Dec 2020";
 assert_eq!(http_string, response_actual);
}

cargo test -p http

running 6 tests
test httprequest::tests::test_method_into ... ok
test httprequest::tests::test_version_into ... ok
test httpresponse::tests::test_http_response_creation ... ok
test httpresponse::tests::test_response_struct_creation_200 ... ok
test httprequest::tests::test_read_http ... ok
test httpresponse::tests::test_response_struct_creation_404 ... ok

test result: ok. 6 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

"HTTP/1.1 404 Not Found\r\nContent-type:text/html\r\nContent-Length:
 33\r\n\r\nItem was shipped on 21st Dec 2020";

48

Figure 2.8 Web server message flow

We’ve written the http library. Let’s write the function, , and . Wemain() server router handler
will have to switch from project to project directory from here on, to write code.http httpserver

In order to refer to the library from project, add the following to the http httpserver Cargo.toml
of the latter.

Let’s take a top-down approach. We’ll start with the function in :main() httpserver/src/main.rs

[dependencies]
http = {path = "../http"}

2.2.3 Writing the main() function and server module

49

Listing 2.17 main() function

The main function imports three modules - , and .handler server router

Next, create three files - , and under .handler.rs server.rs router.rs httpserver/src

Let’s write the code for server module in .httpserver/src/server.rs

Listing 2.18 Server module

The server module has two methods:

mod handler;
mod server;
mod router;
use server::Server;
fn main() {
 // Start a server
 let server = Server::new("localhost:3000");
 //Run the server
 server.run();
}

SERVER MODULE

use super::router::Router;
use http::httprequest::HttpRequest;
use std::io::prelude::*;
use std::net::TcpListener;
use std::str;
pub struct Server<'a> {
 socket_addr: &'a str,
}
impl<'a> Server<'a> {
 pub fn new(socket_addr: &'a str) -> Self {
 Server { socket_addr }
 }
 pub fn run(&self) {
 // Start a server listening on socket address
 let connection_listener = TcpListener::bind(self.socket_addr).unwrap();
 println!("Running on {}", self.socket_addr);
 // Listen to incoming connections in a loop
 for stream in connection_listener.incoming() {
 let mut stream = stream.unwrap();
 println!("Connection established");
 let mut read_buffer = [0; 90];
 stream.read(&mut read_buffer).unwrap();
 // Convert HTTP request to Rust data structure
 let req: HttpRequest = String::from_utf8(read_buffer.to_vec()).unwrap().into();
 // Route request to appropriate handler
 Router::route(req, &mut stream);
 }
 }
}

50

new() accepts a socket address (host and port), and returns a Server instance. methodrun()
performs the following:

binds on the socket,

listens to incoming connections,

reads a byte stream on a valid connection,

converts the stream into an struct instanceHttpRequest

Passes the request to for further processingRouter

The module inspects the incoming HTTP request and determines the right handler to routerouter
the request to, for processing. Add the following code to .httpserver/src/router.rs

Listing 2.19 Router module

The checks if the incoming method is a request. If so, it performs checks in theRouter GET
following order:

2.2.4 Writing the router and handler modules

use super::handler::{Handler, PageNotFoundHandler, StaticPageHandler, WebServiceHandler};
use http::{httprequest, httprequest::HttpRequest, httpresponse::HttpResponse};
use std::io::prelude::*;
pub struct Router;
impl Router {
 pub fn route(req: HttpRequest, stream: &mut impl Write) -> () {
 match req.method {
 // If GET request
 httprequest::Method::Get => match &req.resource {
 httprequest::Resource::Path(s) => {
 // Parse the URI
 let route: Vec<&str> = s.split("/").collect();
 match route[1] {
 // if the route begins with /api, invoke Web service
 "api" => {
 let resp: HttpResponse = WebServiceHandler::handle(&req);
 let _ = resp.send_response(stream);
 }
 // Else, invoke static page handler
 _ => {
 let resp: HttpResponse = StaticPageHandler::handle(&req);
 let _ = resp.send_response(stream);
 }
 }
 }
 },
 // If method is not GET request, return 404 page
 _ => {
 let resp: HttpResponse = PageNotFoundHandler::handle(&req);
 let _ = resp.send_response(stream);
 }
 }
 }
}

51

If the GET request route begins with , it routes the request to the /api WebServiceHandler

If the request is for any other resource, it assumes the request is for a static page andGET

routes the request to the StaticPageHandler

If it is not a request, it sends back a 404 error pageGET

Let’s look at the module next.Handler

For the handler modules, let’s add a couple of external crates to handle json serialization and
deserialization - and . The file for project would look likeserde serde_json Cargo.toml httpserver
this:

Add the following code to .httpserver/src/handler.rs

Let’s start with module imports:

Let’s define a trait called as shown:Handler

Listing 2.20 Trait Handler definition

Note that the trait contains two methods:Handler

handle(): This method has to be implemented for any other user data type to implement

the trait.

load_file() : This method is to load a file (non-json) from directory in public httpserver

HANDLERS

[dependencies]
http = {path = "../http"}
serde = {version = "1.0.117",features = ["derive"]}
serde_json = "1.0.59"

use http::{httprequest::HttpRequest, httpresponse::HttpResponse};
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::env;
use std::fs;

pub trait Handler {
 fn handle(req: &HttpRequest) -> HttpResponse;
 fn load_file(file_name: &str) -> Option<String> {
 let default_path = format!("{}/public", env!("CARGO_MANIFEST_DIR"));
 let public_path = env::var("PUBLIC_PATH").unwrap_or(default_path);
 let full_path = format!("{}/{}", public_path, file_name);

 let contents = fs::read_to_string(full_path);
 contents.ok()
 }
}

52

root folder. The implementation is already provided as part of trait definition.

We’ll now define the following data structures:

StaticPageHandler - to serve static web pages,

WebServiceHandler - to serve json data

PageNotFoundHandler - to serve 404 page

OrderStatus - struct used to load data read from json file

Add the following code to .httpserver/src/handler.rs

Listing 2.21 Data structures for handler

Let’s implement the trait for the three handler structs. Let’s start with the Handler
.PageNotFoundHandler

If the handle method on struct is invoked, it would return a new PageNotFoundHandler
 struct instance with status code:404, and body containing some html loaded fromHttpResponse

file .404.html

Here is the code for .StaticPageHandler

#[derive(Serialize, Deserialize)]
pub struct OrderStatus {
 order_id: i32,
 order_date: String,
 order_status: String,
}

pub struct StaticPageHandler;

pub struct PageNotFoundHandler;

pub struct WebServiceHandler;

impl Handler for PageNotFoundHandler {
 fn handle(_req: &HttpRequest) -> HttpResponse {
 HttpResponse::new("404", None, Self::load_file("404.html"))
 }
}

53

Listing 2.22 Handler to serve static web pages

If the method is called on the , the following processing ishandle() StaticPageHandler
performed:

If incoming request is for localhost:3000/, the contents from file is loaded andindex.html

a new struct is consructedHttpResponse

If incoming request is for localhost:3000/health, the contents from file ishealth.html

loaded, and a new struct is constructedHttpResponse

If the incoming request is for any other file, the method tries to locate and load that file in

the folder. If file is not found, it sends back a 404 error page. If file ishttpserver/public

found, the contents are loaded and embedded within an struct. Note thatHttpResponse

the header in HTTP Response message is set according to the type of file.Content-Type

Let’s look at the last part of the code - .WebServiceHandler

impl Handler for StaticPageHandler {
 fn handle(req: &HttpRequest) -> HttpResponse {
 // Match against the path of static page resource being requested
 match &req.resource {
 http::httprequest::Resource::Path(s) => {
 // Parse the URI
 let route: Vec<&str> = s.split("/").collect();
 match route[1] {
 "" => HttpResponse::new("200", None, Self::load_file("index.html")),
 "health" => HttpResponse::new("200", None, Self::load_file("health.html")),
 path => match Self::load_file(path) {
 Some(contents) => {
 let mut map: HashMap<&str, &str> = HashMap::new();
 if path.contains(".css") {
 map.insert("Content-type", "text/css");
 } else if path.contains(".js") {
 map.insert("Content-type", "text/javascript");
 } else {
 map.insert("Content-type", "text/html");
 }
 HttpResponse::new("200", Some(map), Some(contents))
 }
 None => HttpResponse::new("404", None, Self::load_file("404.html")),
 },
 }
 }
 }
 }
}

54

Listing 2.23 Handler to serve json data

If method is called on the struct, the following processing is done:handle() WebServiceHandler

If the GET request is for , the json file with orders islocalhost:3000/api/shipping/orders

loaded, and this is serialized into json, which is returned as part of the body of the

response.

If it is any other route, a 404 error page is returned.

We’re done with the code. We now have to create the html and json files, in order to test the web
server.

In this section, we’ll first create the test web pages and json data. We’ll then test the web server
for various scenarios and analyse the results.

Create two subfolders and under root folder. Under folder, createdata public httpserver public

// Define a load_json() method to load orders.json file from disk
impl WebServiceHandler {
 fn load_json() -> Vec<OrderStatus> {
 let default_path = format!("{}/data", env!("CARGO_MANIFEST_DIR"));
 let data_path = env::var("DATA_PATH").unwrap_or(default_path);
 let full_path = format!("{}/{}", data_path, "orders.json");
 let json_contents = fs::read_to_string(full_path);
 let orders: Vec<OrderStatus> =
 serde_json::from_str(json_contents.unwrap().as_str()).unwrap();
 orders
 }
}
// Implement the Handler trait
impl Handler for WebServiceHandler {
 fn handle(req: &HttpRequest) -> HttpResponse {
 match &req.resource {
 http::httprequest::Resource::Path(s) => {
 // Parse the URI
 let route: Vec<&str> = s.split("/").collect();
 // if route if /api/shipping/orders, return json
 match route[2] {
 "shipping" if route.len() > 2 && route[3] == "orders" => {
 let body = Some(serde_json::to_string(&Self::load_json()).unwrap());
 let mut headers: HashMap<&str, &str> = HashMap::new();
 headers.insert("Content-type", "application/json");
 HttpResponse::new("200", Some(headers), body)
 }
 _ => HttpResponse::new("404", None, Self::load_file("404.html")),
 }
 }
 }
 }
}

2.2.5 Testing the web server

55

four files - , , , . Under the folder, create theindex.html health.html 404.html styles.css data
following file - .orders.json

The indicative contents are shown here. You can alter them as per your preference.

Listing 2.24 Index web page

httpserver/public/styles.css

Listing 2.25 Health web page

httpserver/public/404.html

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="stylesheet" href="styles.css">
 <title>Index!</title>
 </head>
 <body>
 <h1>Hello, welcome to home page</h1>
 <p>This is the index page for the web site</p>
 </body>
</html>

h1 {
 color: red;
 margin-left: 25px;
}

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Health!</title>
 </head>
 <body>
 <h1>Hello welcome to health page!</h1>
 <p>This site is perfectly fine</p>
 </body>
</html>

<!DOCTYPE html>
 <html lang="en">
<head>
<meta charset="utf-8" /> <title>Not Found!</title>
 </head>
 <body>
 <h1>404 Error</h1>
 <p>Sorry the requested page does not exist</p>
 </body>
</html>

56

Listing 2.26 Json data file for orders

We’re ready to run the server now.

Run the web server from workspace root as shown:

Then from either a browser window or using tool, test the following URLs:curl

You’ll notice that if you invoke these commands on the browser, for the first URL you should
see the heading in red font. Go to tab in chrome browser (or equivalent dev tools onnetwork
other browsers) and view the files downloaded by browser. You’ll see that in addition to the

 file, the is also automatically downloaded by the browser which results inindex.html styles.css
the styling applied to index page. If you inspect further, you can see that of Content-type text/css
has been sent for the file and has been send for the HTML file, from our web servercss text/html
to the browser.

Likewise, if you inspect the response sent for path, you willcontent-type /api/shipping/orders
see received by the browser as part of response headers.application/json

This concludes the section on building a web server.

In this section, we have written an HTTP server and a library of http messages that can serve
static pages, as well as serve json data. While the former capability is associated with the term
web server, the latter is where we start to see web service capabilities. Our projecthttpserver
functions as both a as well as a serving json data. Of course, astatic web server web service
regular would serve more methods than just GET requests. But this exercise wasweb service
intended to demonstrate capabilities of Rust to build such a and fromweb server web service
scratch, without using any web frameworks or external http libraries.

[
 {
 "order_id": 1,
 "order_date": "21 Jan 2020",
 "order_status": "Delivered"
 },
 {
 "order_id": 2,
 "order_date": "2 Feb 2020",
 "order_status": "Pending"
 }
]

cargo run -p httpserver

localhost:3000/
localhost:3000/health
localhost:3000/api/shipping/orders
localhost:3000/invalid-path

57

I hope you enjoyed following along the code, and got to a working server. If you have any
difficulties, you can refer back to the code repository for chapter 2.

This brings an end to the two core objectives of the chapter, viz to build a TCP server/client and
to build an HTTP server.

The complete code for this chapter can be found at https://github.com/peshwar9/rust-servers-
services-apps.

The TCP/IP model is a simplified set of standards and protocols for communication over

the internet. It is organied into four abstract layers: Network Access layer, Internet Layer,

Transport Layer and the Application layer. TCP is the protocol transport-layer over

which other protocols such as HTTP operate. We built a server andapplication-level

client that exchanged data using the TCP protocol.

TCP is also a protocol where data is exchanged as a continuous streamstream-oriented

of bytes.

We built a basic TCP server and client using the Rust standard library. TCP does not

understand the semantics of messages such as HTTP. Our TCP client and server simply

exchanged a stream of bytes without any understanding of the semantics of data

transmitted.

HTTP is an application layer protocol and is the foundation for most web services. HTTP

uses TCP in most cases as the transport protocol.

We built an HTTP library to parse incoming HTTP requests and construct HTTP

responses. The HTTP requests and responses were modeled using Rust and structs enums

.

We built an HTTP server that serves two types of content - (withstatic web pages

associated files such as stylesheets), and .json data

Our web server can accept requests and send responses to standard HTTP clients such as

browsers and tool.curl

We added additional behaviour to our custom structs by implementing several traits.

Some of them were auto-derived using Rust annotations, and others were hand-coded.

We also made use of lifetime annotations to specify lifetimes of references within structs.

You now have the foundational knowledge to understand how Rust can be used to develop a
low-level HTTP library and web server, and also beginnings of a web service. In the next chapter
we will dive right into developing web services using a production-ready web framework that is
written in Rust.

2.3 Summary

58

https://github.com/peshwar9/rust-servers-services-apps

3
This chapter covers:

In this chapter, we will build our first real web service.

The web service will expose a set of APIs over HTTP, and will use the Representational State
Transfer (REST) architectural style.

We’ll build the web service using Actix, a lightweight web framework written in Rust, which is
also one of the most mature in terms of code activity, adoption and ecosystem. We will warm-up
by writing introductory code in Actix to understand its foundational concepts and structure.
Later, we will design and build a set of REST APIs using an in-memory data store that is
thread-safe.

The complete code for this chapter can be found at
https://github.com/peshwar9/rust-servers-services-apps.

Let’s get started.

Building a RESTful Web Service

Getting started with Actix
Writing a RESTful web service

59

https://github.com/peshwar9/rust-servers-services-apps

Why Actix?
This book is about developing high performance web services and applications in
Rust. The web frameworks considered while writing this book were Actix, Rocket,
Warp and Tide. While Warp and Tide are relatively newer, Actix and Rocket lead
the pack in terms of adoption and level of activity. Actix was chosen over Rocket
as Rocket does not yet have native async support, and async support is a key factor
to improve performance in I/O-heavy workloads (such as web service apis) at
scale.

In this book, you are going to build a .digital storefront aimed at tutors

Let’s call our digital platform , because we want tutors to easily publish their trainingEzyTutors
catalogs online, which can trigger the interest of learners and generate sales.

To kickstart this journey, we’ll build a set of simple APIs that allow tutors to create a course and
learners to retrieve courses for a tutor.

This section is organised into two parts. In the first section, we will build a basic async HTTP
server using Actix that demonstrates a simple health-check API. This will help you understand
the foundational concepts of Actix. In the second section, we will design and build REST APIs
for the web service. We will rely on an in-memory data store (rather than a database) andtutor
use test-driven development. Along the way, you will be introduced to key Actix concepts such
as , , parameters and .routes handlers HTTP request HTTP responses

Let’s write some code, shall we?

In this section we’ll write our first Actix server, which can respond to an HTTP request.

3.1 Getting started with Actix

3.1.1 Writing the first REST API

60

A note about the environment
There are many ways to organize code that you will be building out over the course
of this book.
The first option is to create a workspace project (similar to the one we created in
Chapter 2), and create separate projects under the workspace, one per chapter.
The second option is to create a separate cargo binary project for each chapter.
Grouping options for deployment can be determined at a later time.
Either approach is fine, but in this book, we will adopt the first approach to keep
things organised together. We’ll create a workspace project - which willezytutors
hold other projects.

Create a new project with

This will create a cargo project. Let’s convert this into a project. Under this binary workspace
, let’s store the web service and web applications that we will build in future chapters.workspace

Add the following to :Cargo.toml

tutor-nodb will be the name of the webservice we will be creating in this chapter. Create another
cargo project as follows:

This will create a Rust project called under the workspace. Forbinary tutor-nodb ezytutors
convenience, we will call this henceforth. The root folder of this cargo projecttutor web service
contains subfolder and file.src Cargo.toml

Add the following dependencies in of course web service:Cargo.toml

You can use this version of actix-web or whichever later version is available at the
time you are reading this.

Async run-time for Actix. Rust requires use of external run-time engine for
executing async code.

Add the following binary declaration to the same file, to specify the name of theCargo.toml

cargo new ezytutors && cd ezytutors

[workspace]
members = ["tutor-nodb"]

cargo new tutor-nodb && cd tutor-nodb

[dependencies]
actix-web = "3.1.0"
actix-rt = "1.1.1"

61

binary file.

Let’s now create a source file called under the folder. This willbasic-server.rs tutor-nodb/src/bin
contain the function which is the enty point for the binary.main()

There are four basic steps to create and start a basic HTTP server in Actix:

Configure : Routes are paths to various resources in a web server. For our example,routes

we will configure a route to do health checks on the server./health

Configure : Handler is the function that processes requests for a route. We willhandler

define a to service the route.health-check handler /health

Construct a and register routes and handlers with the application.web application

Construct an linked to the and run the server.HTTP server web application

These four steps are shown in the code with annotations. Add the following code to
. Don’t worry if you don’t understand all the steps and code, just type it insrc/bin/basic-server.rs

for now, and they will be explained in detail later.

Note: I would highly recommend that you type in the code line-by-line rather than copy and
paste it into your editor. This will provide a better return on your investment of time in learning,
as you will be practising rather than just reading.

Listing 3.1 Writing a basic Actix web server

[[bin]]
name = "basic-server"

// Module imports
use actix_web::{web, App, HttpResponse, HttpServer, Responder};
use std::io;

// Configure route
pub fn general_routes(cfg: &mut web::ServiceConfig) {
 cfg.route("/health", web::get().to(health_check_handler));
}

//Configure handler
pub async fn health_check_handler() -> impl Responder {
 HttpResponse::Ok().json("Hello. EzyTutors is alive and kicking")
}

// Instantiate and run the HTTP server
#[actix_rt::main]
async fn main() -> io::Result<()> {
 // Construct app and configure routes
 let app = move || App::new().configure(general_routes);

 // Start HTTP server
 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await
}

62

For HTTP GET requests coming in on route /health, the Actix web server will
route the request to health_check_handler()

The handler constructs an HTTP Response with a greeting

Construct an actix web application instance and register the configured routes.

Initialize a web server, load the application, bind it to a socket and run the server.

You can run the server in one of two ways.

If you are in the workspace folder root, run the following command:ezytutors

The flag tells cargo tool to build and run the binary for project , within the-p tutor-nodb
workspace.

Alternatively, you can run the command from within the folder as follows:tutor-nodb

In a web browser window, visit the following URL:

You will see the following printed:

Congratulations! You have built your first REST API in Actix.

In the previous section, we wrote a basic Actix web server (aka Actix HTTP server). The server
was configured to run a web application with a single route which returns the health/health
status of the web application service. shows the various components of Actix that weFigure 3.1
used in the code.

cargo run -p tutor-nodb --bin basic-server

cargo run --bin basic-server

localhost:3000/health

Hello, EzyTutors is alive and kicking

3.1.2 Understanding Actix concepts

63

1.

2.

3.

4.

Figure 3.1 Actix Basic server

Here is the sequence of steps:

When you typed in your browser, an request messagelocalhost:3000/health HTTP GET

was constructed by the browser, and sent to the Actix listening at basic-server

 port.localhost:3000

The Actix inspected the GET request and determined the route in thebasic-server

message to be . The basic server then routed the request to the web application/health

(App) that has the route defined./health

The web application in turn determined the handler for the route to be /health

 and routed the message to the handler.health_check_handler()

The constructs an HTTP response with a text message and sendshealth_check_handler()

it back to the browser.

You would have noticed the terms , , and usedHTTP server Web Application Route Handler
prominently. These are key concepts within Actix to build web services. Recall that we used the
terms server, route and handler also in chapter 2. Conceptually, these are the similar. But let us
understand them in more detail in the context of .Actix

HTTP (web) Server: It is responsible for serving HTTP requests. It understands and implements
the HTTP protocol. By default, the HTTP server starts a number of threads (called workers) to
process incoming requests.

64

Actix concurrency
Actix supports two levels of concurrency. It supports asynchronous I/O wherein a
given os-native thread performs other tasks while waiting on I/O (such as listening
for network connections). It also supports multi-threading for parallelism, and
starts a number of OS-native threads (called) equal to the number ofworkers
logical CPUs in the system, by default.

Actix HTTP server is built around the concept of web applications and requires one for
initialization. It constructs an application instance per OS thread.

App: This represents an Actix web application. An Actix web application is a grouping of the set
of routes it can handle.

Routes and handlers A route in Actix tells the Actix web server how to process an incoming
request.

A route is defined in terms of a , an and a function. Saidroute path HTTP method handler
differently, a request handler is registered with an application’s on a for a particular route path

. The structure of an Actix route is illustrated in figure here.HTTP method

Figure 3.2 Structure of Actix route

This is the route we implemented earlier for health check:

Path

HTTP method

Request handler method

The route shown above specifies that if a request arrives for the path , theGET HTTP /health
request should be routed to the request handler method .health_check_handler()

cfg.route(
 "/health",
 web::get()
 .to(health_check_handler));

65

A request handler is an asynchronous method that accepts zero or more parameters and returns
an HTTP response.

The following is a request handler that we implemented in the previous example.

In code shown, is a function that implements trait. Types thathealth_check_handler() Responder
implement trait acquire the capability to send HTTP responses. Note that our handlerResponder
does not accept any input parameter, but it is possible to send data along with HTTP requests
from the client, that will be made available to handlers. We’ll see such an example in the next
section.

More about Actix-web
Listed here are a few more details about the Actix web framework.
Actix-web is a modern, rust-based, light-weight and fast web framework.
Actix-web has consistently featured among the best web frameworks in
TechEmpower performance benchmarks, which can be found here:

. Actix-web is among the most maturehttps://www.techempower.com/benchmarks/
Rust web frameworks and supports several features as listed here:

Support for HTTP/1.x and HTTP/2
Support for request and response pre-processing
Middleware can be configured for features such as CORS, session management,
logging, and authentication
It supports asynchronous I/O. This provides the ability for the Actix server to perform
other activities while waiting on network I/O.
Content compression
Can connect to multiple databases
Provides an additional layer of testing utilities (over the Rust testing framework) to
support testing of HTTP requests and responses
Supports static web page hosting and server-rendered templates

More technical details about the Actix web framework can be found here:
https://docs.rs/../2.0.0

Using a framework like Actix-Web significantly speeds up the time for prototyping and
development of web APIs in Rust, as it takes care of the low-level details of dealing with HTTP
protocols and messages, and provides several utility functions and features to make web
application development easier.

While Actix-web has an extensive feature set, we’ll be able to cover only a subset of the features

pub async fn health_check_handler() -> impl Responder {
 HttpResponse::Ok().json("Hello, EzyTutors is alive and kicking")
}

66

https://www.techempower.com/benchmarks/
https://docs.rs/crate/actix-web/2.0.0

in this book. The features that we’ll cover include HTTP methods that provide CRUD
(Create-Read-Update-Delete) functionality for resources, persistence with databases, error
handling, state management, JWT authentication, and configuring middleware.

In this section, we built a basic Actix web service exposing a health check API, and reviewed
key features of the Actix framework. In the next section, we will build the web service for the

 social network.EzyTutors

This section will take you through the typical steps in developing a RESTful web service with
Actix.

A web service is a network-oriented service. Network-oriented services communicate through
messages over a network. Web services use HTTP as the primary protocol for exchanging
messages. There are several architectural styles that can be used to develop web services such as
SOAP/XML, REST/HTTP and gRPC/HTTP. In this chapter we will use the REST architectural
style.

3.2 Building web APIs with REST

67

REST APIs
REST stands for . It is a term used to visualize webRepresentational State transfer
services as a network of resources each having its own state. Users trigger
operations such as GET, PUT , POST or DELETE on resources identified by URIs
(for example, can be used to get the currenthttps://www.google.com/..berlin
weather at Berlin). Resources are application entities such as users, shipments,
courses etc. Operations on resources such as POST and PUT can result in state

 in the resources. The latest state is returned to the client making thechanges
request.
REST architecture defines a set of properties (called constraints) that a web service
must adopt, and are listed below:

Client-server architecture for separation of concerns, so client and server are
decoupled and can evolve independently.
Statelessness: Stateless means there is no client context stored on the server between
consecutive requests from the same client.
Layered system: Allows the presence of intermediaries such as load balancers and
proxies between the client and the server.
Cacheability: Supports caching of server responses by clients to improve
performance.
Uniform interface: Defines uniform ways to address and manipulate resources, and to
standardize messages.
Well defined state changes: For example, GET requests do not result in state change,
but POST, PUT and DELETE messages do.

Note that REST is not a formal standard, but an architectural style. So, there may
be variations in the way RESTful services are implemented.

A web service that exposes APIs using the REST architectural style is called a RESTful web
service. We’ll build a RESTful web service in this section for our digital storefront.EzyTutors
We’ve chosen the RESTful style for the APIs because they are intuitive, widely used, and suited
for external-facing APIs (as opposed to say, gRPC which is more suited to APIs between internal
services).

The core functionality of our web service in this chapter will be to allow ,posting of a new course
, and . Our initial dataretrieving course list for a tutor retrieving details for an individual course

model will contain just one resource: . But before getting to the data model, let’s finalizecourse
the structure of the project and code organization, and also determine how to store this data in
memory in a way that is safely accessible across multiple Actix worker threads.

68

https://www.google.com/search?q=weather%20berlin

1.

In this section, let’s define the scope of what we’ll be building, and how code will be organised
within the project.

We will build three RESTful APIs for the web service. These APIs will be registered on an tutor
, which in turn will be deployed on the .Actix web application Actix HttpServer

The APIs are designed to be invoked from a web front-end or mobile application. We’ll test the
GET API requests using a standard browser, and the POST request using , a command-linecurl
HTTP client (you can also use a tool like Postman, if you prefer).

We’ll use an in-memory data structure to store courses, instead of a database. This is just for
simplicity. A relational database will be added in the next chapter.

Figure 3.3 shows the various components of the Web service that we’ll be building.

Figure 3.3 Components of the web service

Figure 3.3 shows how the HTTP requests from web and mobile clients are handled by the web
service. Recall a similar figure we saw for the in the previous section. Here is thebasic-server
sequence of steps in the request and response message flow:

The HTTP requests are constructed by web or mobile clients and sent to the domain

3.2.1 Define project scope and structure

69

1.

2.

3.

4.

1.

2.

3.

address and port number where the is listening.Actix web server

The routes the request to the .Actix web server Actix web app

The has been configured with the routes for the three APIs. It inspects theactix web app

route configuration, determines the right handler for the specified route, and forwards the

request to the function.handler

The request parse the request parameters, read or write to the in-memory datahandlers

store, and return an HTTP response. Any errors in processing are also returned as HTTP

responses with the appropriate status codes.

This, in brief, is how a request-response flow works in Actix web.

Here is a closer look at the APIs that we will build:

POST /courses: Create a new course and save it in the webservice.

GET /courses/tutor_id: Get a list of courses offered by a tutor

GET /courses/tutor_id/course_id: Get course details

We have reviewed the scope of the project. We can now take a look at how the code will be
organised. shows the code structure.Figure 3.4

Figure 3.4 Project structure of
EzyTutors web service

70

1.

2.

3.

4.

5.

6.

Here is the structure of the project:

bin/tutor-service.rs Contains the main() function

models.rs Contains the data model for the web service

state.rs Application state is defined here

routes.rs Contains the route definitions

handlers.rs Contains handler functions that respond to HTTP requests

Cargo.toml :Configuration file and dependencies specification for the project

Next, update the to look like this:Cargo.toml

Listing 3.2 Configuration for the Basic Actix web server

You will notice that we’ve defined two binaries for this project. The first one is basic-server
which we built in the previous section. The second one is which we will build now.tutor-service

We also have two dependencies to include - framework and .actix-web actix-runtime

Note also that under the [package] tag, we’ve added a parameter with a value default-run
. This tells that by default the binary should be built unlesstutor_service cargo tutor_service

otherwise specified. This allows us to build and run the tutor service with cargo run -p
, rather than .tutor-nodb cargo run -p tutor-nodb --bin tutor-service

Create a new file, . This wll contain the code for the webtutor-nodb/src/bin/tutor-service.rs
service in this section.

We’ve covered the project scope and structure. Let’s turn our attention to another topic - how we
will store the data in the web service. We’ve already said we don’t want to use a database, but
want to store data in memory. This is fine in case of a single-threaded server, like the one we
build in the last chapter. But Actix is a multi-threaded server. Each thread (Actix worker) runs a

[package]
name = "tutor-nodb"
version = "0.1.0"
authors = ["peshwar9"]
edition = "2018"
default-run="tutor-service"

[[bin]]
name = "basic-server"

[[bin]]
name = "tutor-service"

[dependencies]
#Actix web framework and run-time
actix-web = "3.0.0"
actix-rt = "1.1.1"

71

separate instance of the application. How can we make sure that two threads are not trying to
mutate the data in-memory simultaneously. Ofcourse, Rust has features such as and Arc Mutex
that we can use to address this problem. But then, where in the web service should we define the
shared data, and how can we make this available to the handlers where the processing will take
place? Actix Web framework gives us a way to address in an elegant way. Actix allows us to
define application state of any custom type, and access it using a built-in extractor. Let’s take a
closer look at this in the next section.

The term state can be used in different contexts to mean different things.application

W3C defines application state (reference link here:) as how anhttps://www.w3.org/../state.html
application is: its configuration, attributes, condition or information content. State changes
happen in an application component when triggered by an event. More specifically, in the
context of applications that provide a RESTful web API to manage resources over a URI (such
as the one we’re discussing in this chapter), application state is closely related to the state of the
resources that are part of the application. In this chapter we are specifically deling with ascourse
the only resource. So, it can be said that the state of our application changes as courses are added
or removed for a tutor. In most real-world applications, the state of resources is persisted to a
data store. However, in our case, we will be storing the application state in memory.

Actix web server spawns a number of threads by default, on startup (this is configurable). Each
thread runs an instance of the web application and can process incoming requests independently.
However, by design, there is no built-in sharing of data across Actix threads. You may wonder
why we would want to share data across threads? Take an example of a database connection
pool. It makes sense for multiple threads to use a common connection pool to handle database
connections. Such data can be modeled in actix as . This state is byApplication state injected
Actix framweork into the request handlers such that the handler can access state as a parameters
in their method signatures. All routes within an Actix app can share application state.

Why do we want to use application state for the ?tutor web service

Because we want to store a list of courses in memory as application state. We’d like this state to
be made available to all the handlers and shared safely across different threads. But before we go
to courses, let’s try a simpler example to learn how to define and use application state with
Actix.

Let’s define a simple application state type with two elements - a data type (representing astring
static string response to health check request) and an data type (representing the numberinteger
of times a user has visited a particular route).

The value will be accessible from all threads, i.e the values cannotstring shared immutable state

3.2.2 Define and manage application state

72

https://www.w3.org/2001/tag/doc/state.html

be modified after initial definition.

The value will be , i.e, the value can be mutated from every thread.number shared mutable state
However, before modifying value, the thread has to acquire control over the data. This is
achieved by defining the value with protection of , a mechanism provided in Rustnumber Mutex
standard library for safe cross-thread communications.

Here is the plan for the first iteration of the tutor-service.

Define application state for health check API in ,src/state.rs

Update the main function (of Actix server) to initialize and register application state in

,src/bin/tutor-service.rs

Define the route for healthcheck route in src/routes.rs

Construct HTTP response in using this application state.src/handlers.rs

Add the following code for application state in .tutor-nodb/src/state.rs

Shared immutable state

Shared mutable state

Add the following code in tutor-nodb/src/bin/tutor-service.rs

DEFINE APPLICATION STATE

use std::sync::Mutex;

pub struct AppState {
 pub health_check_response: String,
 pub visit_count: Mutex<u32>,
}

INITIALIZE AND REGISTER APPLICATION STATE

73

Listing 3.3 Building an Actix web server with application state

Initialize application state

Define the web application

Register application state with the web application

Configure routes for the web application

Initialize Actix web server with the web application, listen on port 3000 and run
the server

Let’s define the health check route in .tutor-nodb/src/routes.rs

Add the following code for health check handler in tutor-nodb/src/handlers.rs

use actix_web::{web, App, HttpServer};
use std::io;
use std::sync::Mutex;

#[path = "../handlers.rs"]
mod handlers;
#[path = "../routes.rs"]
mod routes;
#[path = "../state.rs"]
mod state;

use routes::*;
use state::AppState;

#[actix_rt::main]
async fn main() -> io::Result<()> {
 let shared_data = web::Data::new(AppState {
 health_check_response: "I'm good. You've already asked me ".to_string(),
 visit_count: Mutex::new(0),
 });
 let app = move || {
 App::new()
 .app_data(shared_data.clone())
 .configure(general_routes)
 };

 HttpServer::new(app).bind("127.0.0.1:3000")?.run().await
}

DEFINE ROUTE

use super::handlers::*;
use actix_web::web;

pub fn general_routes(cfg: &mut web::ServiceConfig) {
 cfg.route("/health", web::get().to(health_check_handler));
}

UPDATE HEALTH CHECK HANDLER TO USE APPLICATION STATE

74

Listing 3.4 Health check handler using application state

Application state registered with the Actix web application is made available
automatically to all handler functions as an extractor object of type web::Data<T>
where T is the type of the custom application state that developers have defined.

Data members of the Application state struct () can be directly accessedAppState
using standard dot notation

Field representing shared mutable state () has to be locked first beforevisit_count
accessing, to prevent multiple threads from updating the value of the field
simultaneously

Construct response string to send back to browser client

Update value of the field representing shared mutable state. Since the lock on this
data has already been acquired, the value of the field can be updated safely. The
lock on the data is automatically released when the handler function finishes
execution.

To recap, we

defined app state in ,src/state.rs

registered app state with the Web application in ,src/bin/tutor-service.rs

defined the route in , andsrc/routes.rs

wrote a health check handler function to read and update application state in

.src/handlers.rs

From the root directory of tutor web service (i.e.), run the followingezytutors/tutor-nodb
command:

Note that since we have mentioned the default binary in Cargo.toml as shown here, toolcargo
runs the binary by default:course-service

use super::state::AppState;
use actix_web::{web, HttpResponse};

pub async fn health_check_handler(app_state: web::Data<AppState>) -> HttpResponse {

 let health_check_response = &app_state.health_check_response;
 let mut visit_count = app_state.visit_count.lock().unwrap();
 let response = format!("{} {} times", health_check_response, visit_count);
 *visit_count += 1;
 HttpResponse::Ok().json(&response)
}

cargo run

default-run="tutor-service"

75

Otherwise, we would have had to specify the following command to run the binary,tutor-service
as there are two binaries defined in this project.

Go to a browser, and type the following in the URL window:

Every time you refresh the browser window, you will find the visit count being incremented.
You’ll see a message similar to this:

We’ve so far seen how to define and use application state. This is quite a useful feature for
sharing data and injecting dependencies across the application in a safe manner. We’ll use more
of this feature in the coming chapters.

Before we develop the individual APIs for the tutor web service, let’s first take care of two
things:

Define the data model for the web service

Define the in-memory data store.

These are pre-requisites to build APIs.

Let’s define a Rust data structure to represent a course. A course in our web application will have
the following attributes:

Tutor id: Denotes the tutor who offers the course.

Course id: This is a unique identifier for the course. In our system, a course id will be

unique for a tutor.

Course name: This is the name of the course offered by tutor

Posted time: Timestamp when the course was recorded by the web service.

For creating a new course, the user (of the API) has to specify the and .tutor_id course_name
The and will be generated by the web service.course_id posted_time

We have kept the data model simple, in order to retain focus on the objective of the chapter. For
recording , we will use a third-party (a library is called a in Rustposted_time crate crate

cargo run --bin tutor-service

localhost:3000/health

I'm good. You've already asked me 2 times

3.2.3 Defining the data model

DEFINING THE DATA MODEL FOR COURSES

76

terminology) .chrono

For serializing and deserializing Rust data structures to on-the-wire format (and vice versa) for
transmission as part of the HTTP messages, we will use another third-party crate, .serde

Let’s first update the file in the folder , to add the two externalCargo.toml ezytutor/tutor-nodb
crates - and .chrono serde

Add the following code to .tutor-nodb/src/models.rs

Listing 3.5 Data model for courses

The annotation #derive derives the implementations for four traits - Deserialize,
Serialize, Debug and Clone. The first two are part of the Serde crate and help to
convert Rust data structs into on-the-wire formats and vice versa. Implementing
Debug trait helps to print the Course struct values for debug purposes. Clone trait
helps address the Rust ownership rules during processing.

NativeDateTime is a chrono data type for storing timestamp information

Function to convert data from incoming HTTP request to Rust struct

In the code shown, you will notice that and have been declared to be ofcourse_id posted_time
type Option<usize> and Option<NaiveDateTime> respectively. What this means is that these

[dependencies]
//actix dependencies not shown here

Data serialization library
serde = { version = "1.0.110", features = ["derive"] }
Other utilities
chrono = {version = "0.4.11", features = ["serde"]}

use actix_web::web;
use chrono::NaiveDateTime;
use serde::{Deserialize, Serialize};

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct Course {
 pub tutor_id: usize,
 pub course_id: Option<usize>,
 pub course_name: String,
 pub posted_time: Option<NaiveDateTime>,
}
impl From<web::Json<Course>> for Course {
 fn from(course: web::Json<Course>) -> Self {
 Course {
 tutor_id: course.tutor_id,
 course_id: course.course_id,
 course_name: course.course_name.clone(),
 posted_time: course.posted_time,
 }
 }
}

77

two fields can either hold a valid value of type and respectively, orusize chrono::NaiveDateTime
they can both hold a value of if no value is assigned to these fields.None

Further, in the code statement annotated by <3>, you will notice a trait implementation.From
This is a trait implementation that contains a function to convert to web::Json<Course> Course
data type. What exactly does this mean?

We earlier saw that application state that is registered with the Actix web server is made
available to handlers using the extractor . Likewise, data from incoming requestweb::Data<T>
body is made available to handler functions through the extractor . When a POSTweb::Json<T>
request is sent from a web client with the and as data payload, these fieldstutor_id course_name
are automatically extracted from Actix object and converted to Rust type,web::Json<T> Course
by this method. This is the purpose of the trait implementation in code .From listing 3.5

78

Derivable traits
Traits in Rust are like in other languages. They are used to define sharedinterfaces
behaviour. Data types implementing a share common behaviour that istrait
defined in the . For example, we can define a called astrait trait RemoveCourse
shown.

Assuming we have two types of tutors - (business customers)training institutes
and , both types can implement the trait (whichindividual tutors RemoveCourse
means they share a common behaviour that courses offered by both types can be
removed from our web service). However the exact details of processing needed
for removing a course may vary because business customers may have multiple
levels of approvals before a decision on removing a course is taken. This is an
example of a custom trait. The Rust standard library itself defines several traits,
which are implemented by the types within Rust. Interestingly, these traits can be
implemented by custom structs defined at the application-level. For example,

 is a trait defined in the Rust standard library to print out value of a Rust dataDebug
type for debugging. A custom struct (defined by application) can also choose to
implement this trait to print out values of the custom type for debugging. Such trait
implementations can be auto-derived by the Rust compiler when we specify the

 annotation above the type definition Such traits are called #[derive()] derivable
. Examples of derivable traits in Rust include , , , andtraits Eq PartialEq Clone Copy

.Debug
Note that such trait implementations can also be manually implemented, if
complex behaviour is desired.

We have defined the data model for . Now, how will we store courses as they are added?course

We do not want to use a relational database or a similar persistent data store. So, let’s start with a
simpler option.

We earlier saw that Actix provides the feature to share application state across multiple threads

trait RemoveCourse {
 fn remove(self, course_id) -> Self;
}
struct TrainingInstite;
struct IndividualTutor;

impl RemoveCourse for IndividualTutor {
 // An individual tutor's request is enough to remove a course.
}
impl RemoveCourse for TrainingInstitute {
 // There may be additional approvals needed to remove a course
 offering for business customers
}

ADDING COURSE COLLECTION TO APPLICATION STATE

79

of execution. Why not use this feature for our in-memory data store?

We had earlier defined an AppState struct in to keep track of visit counts.tutor-nodb/src/state.rs
Let’s enhance that struct to also store the course collection.

Courses are stored in application state as a Vec collection, protected by a Mutex.

Since we have altered the definition of application state, we should reflect this in main()
function.

In , make sure that all the module imports are correctlytutor-nodb/src/bin/tutor-service.rs
declared.

Listing 3.6 Module imports for main() function

Then, in main() function, initialize courses collection with an empty vector collection in
AppState.

courses field initialized with a Mutex-protected empty vector

use super::models::Course;
use std::sync::Mutex;
pub struct AppState {
 pub health_check_response: String,
 pub visit_count: Mutex<u32>,
 pub courses: Mutex<Vec<Course>>,
}

use actix_web::{web, App, HttpServer};
use std::io;
use std::sync::Mutex;

#[path = "../handlers.rs"]
mod handlers;
#[path = "../models.rs"]
mod models;
#[path = "../routes.rs"]
mod routes;
#[path = "../state.rs"]
mod state;
use routes::*;
use state::AppState;

async fn main() -> io::Result<()> {
 let shared_data = web::Data::new(AppState {
 health_check_response: "I'm good. You've already asked me ".to_string(),
 visit_count: Mutex::new(0),
 courses: Mutex::new(vec![]),
 });
// other code
}

80

While we haven’t written any new API yet, we have done the following:

Added a data model module,

Updated the function, andmain()

Changed application state struct to include a course collection

Updated routes and handlers

Updated Cargo.toml

Let’s ensure that nothing is broken. Build and run the code with the following command from
within the folder:tutor-nodb

You should be able to test with the following URL from the web browser, and things should
work as before:

If you are able to view the health page with message containing visitor count, you can proceed
ahead. If not, review the code in each of the files for oversight or typos. If you still cannot get it
to work, refer to the completed code within the code repository.

We’re now ready to write the code for the three course-related APIs in the coming sections.

For writing the APIs, let’s first define a uniform set of steps that we can follow (like a template).
We will execute these steps for writing each API. By the end of this chapter, these steps should
become ingrained in you.

Step 1: Define the route configuration

Step 2: Write the handler function

Step 3: Write automated test scripts

Step 4: Build the service and test the API

The route configuration for all new routes will be added in and thetutor-nodb/src/routes.rs
handler function will be added in . The automated test scripts will alsotutor-nodb/src/handlers.rs
be added under for our project.tutor-nodb/src/handlers.rs

Let’s now write the code to implement a REST API for posting a new course. We’ll follow the
set of steps defined towards the end of the previous section, to implement the API.

cargo run

curl localhost:3000/health

3.2.4 Post a course

81

Let’s add the following route to , after the block:tutor-nodb/src/routes.rs general_routes

The expression creates a new resource called ,service(web::scope("/courses")) scope courses
under which all APIs related to courses can be added. A is a set of resources with ascope
common root path. A set of routes can be registered under a scope. Application state can be
shared among routes within the same scope. For example, we can create two separate scope
declarations, one for and one for , and access routes registered under them ascourses tutors
follows.

These are only examples for illustration, but don’t test them yet as we have not yet defined these
routes. What we have defined so far is one route under which matches an incoming courses

 request with path and routes it to handler called .POST /courses/ new_course

Let’s look at how we can invoke the route, implementing the API. The command shownafter
next could be used to post a new course.

Note, this command will not work yet, because we have to do two things. First, we have to
register this new route group with the web application that is initialized in the function.main()
Secondly, we have to define the handler method.new_course

Modify the main() function in to look like this.tutor-nodb/src/bin/tutor-service.rs

Register the new course_routes group with application

We’ve completed the route configuration. But the code won’t compile yet. Let’s write the
handler function to post a new course.

STEP 1: DEFINE THE ROUTE CONFIGURATION

pub fn course_routes(cfg: &mut web::ServiceConfig) {
 cfg
 .service(web::scope("/courses")
 .route("/", web::post().to(new_course)));
}

localhost:3000/courses/1 // retrieve details for course with id 1
localhost:3000/tutors/1 // retrieve details for tutor with id 1

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
 -d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

let app = move || {
 App::new()
 .app_data(shared_data.clone())
 .configure(general_routes)
 .configure(course_routes)
};

82

Recall that an Actix handler function processes an incoming HTTP Request using the data
payload and URL parameters sent with the request, and sends back an HTTP response. Let’s
write the handler for processing a POST request for a new course. Once the new course is
created by the handler, it is stored as part of the struct, which is then automaticallyAppState
made available to the other handlers in the application. Add the following code to

.tutor-nodb/src/handlers.rs

Listing 3.7 Handler function for posting a new course

The handler function takes two parameters - data payload from HTTP request and
application state.

Since courses collection is protected by Mutex, we have to lock it first to access the
data

Convert the course collection (stored within AppState) into an iterator, so that we
can iterate through each element in the collection for processing

Review each element in collection and filter only for the courses corresponding to
the tutor_id (received as part of the HTTP request)

The filtered list of courses for the tutor is stored in a Vector

The number of elements in filtered list is computed. This is used to generate the id
for next course.

STEP 2: WRITE THE HANDLER FUNCTION

// previous imports not shown here
use super::models::Course;
use chrono::Utc;

pub async fn new_course(
 new_course: web::Json<Course>,
 app_state: web::Data<AppState>,
) -> HttpResponse {
 println!("Received new course");
 let course_count_for_user = app_state
 .courses
 .lock()
 .unwrap()
 .clone()
 .into_iter()
 .filter(|course| course.tutor_id == new_course.tutor_id)
 .collect::<Vec<Course>>()
 .len();
 let new_course = Course {
 tutor_id: new_course.tutor_id,
 course_id: Some(course_count_for_user + 1),
 course_name: new_course.course_name.clone(),
 posted_time: Some(Utc::now().naive_utc()),
 };
 app_state.courses.lock().unwrap().push(new_course);
 HttpResponse::Ok().json("Added course")
}

83

Create a new course instance

Add the new course instance to the course collection that is part of the application
state ()AppState

Send back an HTTP response to web client

To recap, this handler function

gets write access to the course collection stored in the application state ()AppState

extracts data payload from the incoming request,

generates a new course id by calculating number of existing courses for the tutor, and

incrementing by 1

creates a new course instance and

adds the new course instance to the course collection in .AppState

Let’s write the test scripts for this function, which we can use for automated testing.

Actix web provides supporting utilities for automated testing, over and above what Rust
provides. To write tests for Actix services, we first have to start with the basic Rust testing
utilities - placing tests within the tests module and annotating it for the compiler. In addition,
Actix provides an annotation #[actix_rt::test] for the async test functions, to instruct the Actix
runtime to execute these tests.

Let’s create a test script for posting a new course. For this, we need to construct course details to
be posted, and also initialize the application state . These are annotated with steps <5> and <6>
in test script shown here.

Add this code in , towards the end of the source file.tutor-nodb/src/handlers.rs

STEP 3: WRITE AUTOMATED TEST SCRIPTS

84

Listing 3.8 Test script for posting a new course

The #[cfg(test)] annotation on tests module tells Rust to compile and run the tests
only when cargo test command is run, and not for cargo build or cargo run

Tests in Rust are written within the tests module.

Import all handler declarations from the parent module (which hosts the tests
module)

Normal rust tests are annotated with #[tests]. But since this is an asynchronous test
function, we have to alert the async run-time of Actix-web to execute this async
test function.

Construct a web::Json<T> object representing request data payload , i.e. new
course data from tutor

Construct a web::Data<T> object representing application state

Invoke handler function with application state and simulated request data payload

Verify if the HTTP status response code (returned from the handler) indicates
success

Run the tests from the folder, with the following command:tutor-nodb

You should see the test successfully executed with a message that looks similar to this:

#[cfg(test)]
mod tests {
 use super::*;
 use actix_web::http::StatusCode;
 use std::sync::Mutex;

 #[actix_rt::test]
 async fn post_course_test() {
 let course = web::Json(Course {
 tutor_id: 1,
 course_name: "Hello, this is test course".into(),
 course_id: None,
 posted_time: None,
 });
 let app_state: web::Data<AppState> = web::Data::new(AppState {
 health_check_response: "".to_string(),
 visit_count: Mutex::new(0),
 courses: Mutex::new(vec![]),
 });
 let resp = new_course(course, app_state).await;
 assert_eq!(resp.status(), StatusCode::OK);
 }
}

cargo test

running 1 test
test handlers::tests::post_course_test ... ok

85

Build and run the server from the folder with :tutor-no-db

From a commandline run the following curl command: (or you can use a GUI tool like Postman):

You should see the message "Added course" returned from server.

You’ve now built the API for posting a new course. Next, let’s retrieve all existing courses for a
tutor.

Here we’ll implement the handler function to retrieve all courses for a tutor. We know the drill,
there are four steps to follow.

Since we have the foundation of code established, things should be quicker from now.

Let’s add a new route in .src/routes.rs

Add new route for getting courses for a tutor (represented by the user_id variable)

The handler function

retrieves courses from ,AppState

filters courses corresponding to requested, andtutor_id

returns the list.

The code shown here is to be entered in src/handlers.rs

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

STEP 4: BUILD THE SERVICE AND TEST THE API

cargo run

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
 -d '{"tutor_id":1, "course_name":"Hello , my first course !"}'

3.2.5 Get all courses for a tutor

STEP 1: DEFINE THE ROUTE CONFIGURATION

pub fn course_routes(cfg: &mut web::ServiceConfig) {
 cfg.service(
 web::scope("/courses")
 .route("/", web::post().to(new_course))
 .route("/{user_id}", web::get().to(get_courses_for_tutor)),
);
}

STEP 2: WRITE THE HANDLER FUNCTION

86

Listing 3.9 Handler function to get all courses for a tutor

Filter for courses corresponding to tutor requested by web client

If courses are found for tutor, return success response with the course list

If courses are not found for tutor, send error message.

In this test script, we will invoke the handler function . This function takesget_courses_for_tutor
two arguments - application state and a URL path parameter (denoting tutor id). For example, if
the user types the following in the browser, it means he/she wants to see list of all courses with
tutor_id = 1

Recall that this maps to the route definition in , also shown here for reference:src/routes.rs

The Actix framework automatically passes the application state and the URL path parameter to
the handler function , in normal course of execution. However for testingget_courses_for_tutor
purposes, we would have to manually simulate the function arguments by constructing an
application state object and URL path parameter. You will see these steps annotated with <1>
and <2> respectively in the test script shown next.

Enter the following test script within the tests module in .src/handlers.rs

pub async fn get_courses_for_tutor(
 app_state: web::Data<AppState>,
 params: web::Path<(usize)>,
) -> HttpResponse {
 let tutor_id: usize = params.0;

 let filtered_courses = app_state
 .courses
 .lock()
 .unwrap()
 .clone()
 .into_iter()
 .filter(|course| course.tutor_id == tutor_id)
 .collect::<Vec<Course>>();

 if filtered_courses.len() > 0 {
 HttpResponse::Ok().json(filtered_courses)
 } else {
 HttpResponse::Ok().json("No courses found for tutor".to_string())
 }
}

STEP 3: WRITE AUTOMATED TEST SCRIPTS

localhost:3000/1

.route("/{user_id}", web::get().to(get_courses_for_user))

87

Listing 3.10 Test script for retrieving courses for a tutor

Construct app state

Simulate request parameter

Invoke the handler

Check response

Build and run the server from folder with :tutor-nodb

Post a few courses from command line as shown (or use a GUI tool like):Postman

From a web browser, type the following in URL box:

You should see the courses displayed as shown next:

Try posting more courses and verify results.

Our web service is now capable of retrieving course list for a tutor.

#[actix_rt::test]
async fn get_all_courses_success() {
 let app_state: web::Data<AppState> = web::Data::new(AppState {
 health_check_response: "".to_string(),
 visit_count: Mutex::new(0),
 courses: Mutex::new(vec![]),
 });
 let tutor_id: web::Path<(usize)> = web::Path::from((1));
 let resp = get_courses_for_tutor(app_state, tutor_id).await;
 assert_eq!(resp.status(), StatusCode::OK);
}

STEP 4: BUILD THE SERVICE AND TEST THE API

cargo run

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json" -d
 '{"tutor_id":1, "course_name":"Hello , my first course !"}'
curl -X POST localhost:3000/courses/ -H "Content-Type: application/json" -d
'{"tutor_id":1, "course_name":"Hello , my second course !"}'
curl -X POST localhost:3000/courses/ -H "Content-Type: application/json" -d
'{"tutor_id":1, "course_name":"Hello , my third course !"}'

localhost:3000/courses/1

[{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !"
 ,"posted_time":"2020-09-05T06:26:51.866230"},
 {"tutor_id":1,"course_id":2,"course_name":"Hello , my second course !"
 ,"posted_time":"2020-09-05T06:27:22.284195"},{"tutor_id":1,"course_id":3,"course_name"
 :"Hello , my third course !" ,"posted_time":"2020-09-05T06:57:03.850014"}]

88

In this section, we’ll implement the handler function to search and retrieve details for a specific
course. Let’s again go through the defined 4-step process.

Add a new route as shown here in .src/routes.rs

Add new route to get course details

The handler function is similar to the previous API (to get all courses for a tutor), except for the
additional step to filter on course id also.

Listing 3.11 Handler function to retrieve details for a single course

Retrieve course corresponding to the tutor_id and course_id sent as request
parameters.

Converts Option<T> to Result<T,E>. If Option<T> evaluates to Some(val), it
returns Ok(val). If None found, it returns Err(err).

3.2.6 Get details of a single course

STEP 1: DEFINE THE ROUTE CONFIGURATION

pub fn course_routes(cfg: &mut web::ServiceConfig) {
 cfg.service(
 web::scope("/courses")
 .route("/", web::post().to(new_course))
 .route("/{user_id}", web::get().to(get_courses_for_user))
 .route("/{user_id}/{course_id}", web::get().to(get_course_detail)),
);
}

STEP 2: WRITE THE HANDLER FUNCTION

pub async fn get_course_detail(
 app_state: web::Data<AppState>,
 params: web::Path<(usize, usize)>,
) -> HttpResponse {
 let (tutor_id, course_id) = params.0;
 let selected_course = app_state
 .courses
 .lock()
 .unwrap()
 .clone()
 .into_iter()
 .find(|x| x.tutor_id == tutor_id && x.course_id == Some(course_id))
 .ok_or("Course not found");

 if let Ok(course) = selected_course {
 HttpResponse::Ok().json(course)
 } else {
 HttpResponse::Ok().json("Course not found".to_string())
 }
}

89

In this test script, we will invoke the handler function . This function takes twoget_course_detail
arguments - application state and URL path parameters. For example, if the user types the
following in the browser, it means the user wants to see details of course with (firstuser id = 1
parameter in URL path) and = 1 (second parameter in URL path).course id

Recall that this maps to the route definition in , shown next for reference:src/routes.rs

The Actix framework automatically passes the application state and the URL path parameters to
the handler function in normal course of execution. But for testing purposes,get_course_detail
we would have to manually simulate the function arguments by constructing an application state
object and URL path parameters. You will see these steps annotated with <1> and <2>
respectively in the test script shown.

Add the following test function to module within .tests src/handlers.rs

Listing 3.12 Test case to retrieve course detail

Construct app state

Construct an object of type web::Path with two parameters. This is to simulate a
user typing localhost:3000/1/1 in a web browser.

Invoke the handler

Check response

Build and run the server from folder with :tutor-nodb

STEP 3: WRITE AUTOMATED TEST SCRIPTS

localhost:3000/1/1

.route("/{user_id}/{course_id}", web::get().to(get_course_detail)),

#[actix_rt::test]
async fn get_one_course_success() {
 let app_state: web::Data<AppState> = web::Data::new(AppState {
 health_check_response: "".to_string(),
 visit_count: Mutex::new(0),
 courses: Mutex::new(vec![]),
 });
 let params: web::Path<(usize, usize)> = web::Path::from((1, 1));
 let resp = get_course_detail(app_state, params).await;
 assert_eq!(resp.status(), StatusCode::OK);
}

STEP 4: BUILD THE SERVER AND TEST THE API

cargo run

90

Post two new courses from command line with:

From a web browser type the following in URL box:

You should see the course detail displayed for tutor_id = 1 and course_id = 1, as shown here:

You can add more courses, and check if the correct detail is displayed for the other course ids.

Our web service is now capable of retrieving details for a single course.

Note that the tests shown in this chapter are only to demonstrate how to write test scripts for
various types of APIs with different types of data payload and URL parameters sent from the
web client. Real-world tests would be more exhaustive covering various success and failure
scenarios.

In this chapter, you’ve built a set of RESTful APIs for a tutor web application from scratch
starting with data models, routes , application state, and request handlers. You also wrote
automated test cases using Actix web’s inbuilt test execution support for web applications.

Congratulations, you have built your first web service in Rust!

curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
 -d '{"tutor_id":1, "course_name":"Hello , my first course !"}'
curl -X POST localhost:3000/courses/ -H "Content-Type: application/json"
-d '{"tutor_id":1, "course_name":"Hello , my second course !"}'

localhost:3000/courses/1/1

{"tutor_id":1,"course_id":1,"course_name":"Hello , my first course !"
 ,"posted_time":"2020-09-05T06:26:51.866230"}

91

Actix is a modern, light-weight web framework written in Rust. It provides an async

HTTP server that offers safe concurrency and high performance.

The key components of Actix web we used in this chapter are HttpServer, App, routes,

handlers , request extractors, HttpResponse and application state. These are the core

components needed to build RESTful APIs in Rust using Actix.

A webservice is a combination of one or more APIs, accessible over HTTP, at a

particular domain address and port. APIs can be built using different architectural styles.

REST is a popular and intuitive architectural style used to build APIs, and aligns well

with the HTTP protocol standards.

Each RESTful API is configured as a route in Actix. A route is a combination of a path

that identifies a resource, and function.HTTP method handler

A RESTful API call sent from a web or mobile client is received over HTTP by the Actix

HttpServer listening on a specific port. The request is passed on to the Actix web

application registered with it. One or more routes are registered with the Actix web

application, which routes the incoming request to a function (based on handler request

 and method).path HTTP

Actix provides two types of concurrency - multi-threading and Async I/O. This enables

development of high performance web services.

The Actix HTTP server uses multi-threading concurrency by starting multiple worker

threads on startup, equal to the number of logical CPUs in the system. Each thread runs a

separate instance of the Actix web application.

In addition to multi-threading, Actix uses Async I/O, which is another type of

concurrency mechanism. This enables an Actix web application to perform other tasks

while waiting on I/O on a single thread. Actix has its own Async runtime that is based on

, a popular, production-ready async library in Rust.Tokio

Actix allows the web application to define custom application state, and provides a

mechanism to safely access this state from each handler function. Since each application

instance of Actix runs in a separate thread, Actix provides a safe mechanism to access

and mutate this shared state without conflicts or data races.

At a minimum, a RESTful API implementation in Actix requires a route configuration

and a handler function to be added.

Actix also provides utilities for writing automated test cases.

In the next chapter we will continue with the code built here, and add a persistence layer for the
web service, using a relational database.

3.3 Summary

92

	Rust Servers, Services, and Apps MEAP V01
	Copyright
	Welcome
	Brief contents
	Chapter 1: Why Rust for web applications?
	1.1 Introduction to modern web applications
	1.2 Choosing Rust for web applications
	1.2.1 Characteristics of web applications
	1.2.2 Benefits of Rust for web applications

	1.3 Visualizing the example application
	1.3.1 What will be build?
	1.3.2 Technical guidelines for the example application

	1.4 Summary

	Chapter 2: Writing a basic web server from scratch
	2.1 Writing a TCP server in Rust
	2.1.1 Designing the TCP/IP communication flow
	2.1.2 Writing the TCP server and client

	2.2 Writing an HTTP server in Rust
	2.2.1 Parsing HTTP request messages
	2.2.2 Constructing HTTP response messages
	2.2.3 Writing the main() function and server module
	2.2.4 Writing the router and handler modules
	2.2.5 Testing the web server

	2.3 Summary

	Chapter 3: Building a RESTful Web Service
	3.1 Getting started with Actix
	3.1.1 Writing the first REST API
	3.1.2 Understanding Actix concepts

	3.2 Building web APIs with REST
	3.2.1 Define project scope and structure
	3.2.2 Define and manage application state
	3.2.3 Defining the data model
	3.2.4 Post a course
	3.2.5 Get all courses for a tutor
	3.2.6 Get details of a single course

	3.3 Summary

